Skip to main content
Top
Published in: Diabetologia 2/2014

01-02-2014 | Article

Thrombomodulin domain 1 ameliorates diabetic nephropathy in mice via anti-NF-κB/NLRP3 inflammasome-mediated inflammation, enhancement of NRF2 antioxidant activity and inhibition of apoptosis

Authors: Shun-Min Yang, Shuk-Man Ka, Hua-Lin Wu, Yu-Chuan Yeh, Cheng-Hsiang Kuo, Kuo-Feng Hua, Guey-Yueh Shi, Yi-Jen Hung, Fone-Ching Hsiao, Sung-Sen Yang, Yi-Shing Shieh, Shih-Hua Lin, Chyou-Wei Wei, Jeng-Shin Lee, Chu-Yi Yang, Ann Chen

Published in: Diabetologia | Issue 2/2014

Login to get access

Abstract

Aims/hypothesis

Chronic inflammatory processes have been increasingly shown to be involved in the pathogenesis of diabetes and diabetic nephropathy. Recently, we demonstrated that a lectin-like domain of thrombomodulin (THBD), which is known as THBD domain 1 (THBDD1) and which acts independently of protein C activation, neutralised an inflammatory response in a mouse model of sepsis. Here, therapeutic effects of gene therapy with adeno-associated virus (AAV)-carried THBDD1 (AAV-THBDD1) were tested in a mouse model of type 2 diabetic nephropathy.

Methods

To assess the therapeutic potential of THBDD1 and the mechanisms involved, we delivered AAV-THBDD1 (1011 genome copies) into db/db mice and tested the effects of recombinant THBDD1 on conditionally immortalised podocytes.

Results

A single dose of AAV-THBDD1 improved albuminuria, renal interstitial inflammation and glomerular sclerosis, as well as renal function in db/db mice. These effects were closely associated with: (1) inhibited activation of the nuclear factor κB (NF-κB) pathway and the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome; (2) promotion of nuclear factor (erythroid-derived 2)-like 2 (NRF2) nuclear translocation; and (3) suppression of mitochondria-derived apoptosis in the kidney of treated mice.

Conclusions/interpretation

AAV-THBDD1 gene therapy resulted in improvements in a model of diabetic nephropathy by suppressing the NF-κB–NLRP3 inflammasome-mediated inflammatory process, enhancing the NRF2 antioxidant pathway and inhibiting apoptosis in the kidney.
Appendix
Available only for authorised users
Literature
1.
go back to reference Booth GL, Kapral MK, Fung K, Tu JV (2006) Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet 368:29–36PubMedCrossRef Booth GL, Kapral MK, Fung K, Tu JV (2006) Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet 368:29–36PubMedCrossRef
2.
go back to reference Wolf G, Ritz E (2003) Diabetic nephropathy in type 2 diabetes prevention and patient management. J Am Soc Nephrol 14:1396–1405PubMedCrossRef Wolf G, Ritz E (2003) Diabetic nephropathy in type 2 diabetes prevention and patient management. J Am Soc Nephrol 14:1396–1405PubMedCrossRef
3.
go back to reference Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC, Tesch GH (2004) Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int 65:116–128PubMedCrossRef Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC, Tesch GH (2004) Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int 65:116–128PubMedCrossRef
4.
go back to reference Stolar M (2010) Glycemic control and complications in type 2 diabetes mellitus. Am J Med 123:S3–S11PubMedCrossRef Stolar M (2010) Glycemic control and complications in type 2 diabetes mellitus. Am J Med 123:S3–S11PubMedCrossRef
5.
go back to reference Elmarakby AA, Sullivan JC (2012) Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther 30:49–59PubMedCrossRef Elmarakby AA, Sullivan JC (2012) Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther 30:49–59PubMedCrossRef
6.
go back to reference Isermann B, Vinnikov IA, Madhusudhan T et al (2007) Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 13:1349–1358PubMedCrossRef Isermann B, Vinnikov IA, Madhusudhan T et al (2007) Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 13:1349–1358PubMedCrossRef
7.
go back to reference Ka SM, Yeh YC, Huang XR et al (2012) Kidney-targeting Smad7 gene transfer inhibits renal TGF-beta/MAD homologue (SMAD) and nuclear factor kappaB (NF-kappaB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia 55:509–519PubMedCrossRef Ka SM, Yeh YC, Huang XR et al (2012) Kidney-targeting Smad7 gene transfer inhibits renal TGF-beta/MAD homologue (SMAD) and nuclear factor kappaB (NF-kappaB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia 55:509–519PubMedCrossRef
8.
go back to reference Brezniceanu ML, Liu F, Wei CC et al (2008) Attenuation of interstitial fibrosis and tubular apoptosis in db/db transgenic mice overexpressing catalase in renal proximal tubular cells. Diabetes 57:451–459PubMedCrossRef Brezniceanu ML, Liu F, Wei CC et al (2008) Attenuation of interstitial fibrosis and tubular apoptosis in db/db transgenic mice overexpressing catalase in renal proximal tubular cells. Diabetes 57:451–459PubMedCrossRef
9.
go back to reference Morser J (2012) Thrombomodulin links coagulation to inflammation and immunity. Curr Drug Targets 13:421–431PubMedCrossRef Morser J (2012) Thrombomodulin links coagulation to inflammation and immunity. Curr Drug Targets 13:421–431PubMedCrossRef
10.
go back to reference Ohsawa I, Ohi H, Fujita T, Kanmatsuse K (1996) Elevation of plasma thrombomodulin level in primary glomerulonephritis with heavy proteinuria. Nihon Jinzo Gakkai Shi 38:300–304PubMed Ohsawa I, Ohi H, Fujita T, Kanmatsuse K (1996) Elevation of plasma thrombomodulin level in primary glomerulonephritis with heavy proteinuria. Nihon Jinzo Gakkai Shi 38:300–304PubMed
11.
go back to reference Ikeguchi H, Maruyama S, Morita Y et al (2002) Effects of human soluble thrombomodulin on experimental glomerulonephritis. Kidney Int 61:490–501PubMedCrossRef Ikeguchi H, Maruyama S, Morita Y et al (2002) Effects of human soluble thrombomodulin on experimental glomerulonephritis. Kidney Int 61:490–501PubMedCrossRef
12.
go back to reference Ozaki T, Anas C, Maruyama S et al (2008) Intrarenal administration of recombinant human soluble thrombomodulin ameliorates ischaemic acute renal failure. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc 23:110–119 Ozaki T, Anas C, Maruyama S et al (2008) Intrarenal administration of recombinant human soluble thrombomodulin ameliorates ischaemic acute renal failure. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc 23:110–119
13.
go back to reference Li YH, Shi GY, Wu HL (2006) The role of thrombomodulin in atherosclerosis: from bench to bedside. Cardiovasc Hematol Agents Med Chem 4:183–187PubMedCrossRef Li YH, Shi GY, Wu HL (2006) The role of thrombomodulin in atherosclerosis: from bench to bedside. Cardiovasc Hematol Agents Med Chem 4:183–187PubMedCrossRef
14.
15.
go back to reference Shi CS, Shi GY, Hsiao SM et al (2008) Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood 112:3661–3670PubMedCrossRef Shi CS, Shi GY, Hsiao SM et al (2008) Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood 112:3661–3670PubMedCrossRef
16.
go back to reference Kuo CH, Chen PK, Chang BI et al (2012) The recombinant lectin-like domain of thrombomodulin inhibits angiogenesis through interaction with Lewis Y antigen. Blood 119:1302–1313PubMedCrossRef Kuo CH, Chen PK, Chang BI et al (2012) The recombinant lectin-like domain of thrombomodulin inhibits angiogenesis through interaction with Lewis Y antigen. Blood 119:1302–1313PubMedCrossRef
17.
go back to reference Li YH, Chung HC, Luo CY et al (2010) Thrombomodulin is upregulated in cardiomyocytes during cardiac hypertrophy and prevents the progression of contractile dysfunction. J Card Fail 16:980–990PubMedCrossRef Li YH, Chung HC, Luo CY et al (2010) Thrombomodulin is upregulated in cardiomyocytes during cardiac hypertrophy and prevents the progression of contractile dysfunction. J Card Fail 16:980–990PubMedCrossRef
18.
go back to reference Tsai PY, Ka SM, Chang JM et al (2012) Antroquinonol differentially modulates T cell activity and reduces interleukin-18 production, but enhances Nrf2 activation, in murine accelerated severe lupus nephritis. Arthritis Rheum 64:232–242PubMedCrossRef Tsai PY, Ka SM, Chang JM et al (2012) Antroquinonol differentially modulates T cell activity and reduces interleukin-18 production, but enhances Nrf2 activation, in murine accelerated severe lupus nephritis. Arthritis Rheum 64:232–242PubMedCrossRef
19.
go back to reference Chao TK, Rifai A, Ka SM et al (2006) The endogenous immune response modulates the course of IgA-immune complex mediated nephropathy. Kidney Int 70:283–297PubMedCrossRef Chao TK, Rifai A, Ka SM et al (2006) The endogenous immune response modulates the course of IgA-immune complex mediated nephropathy. Kidney Int 70:283–297PubMedCrossRef
20.
go back to reference Ohse T, Pippin JW, Vaughan MR, Brinkkoetter PT, Krofft RD, Shankland SJ (2008) Establishment of conditionally immortalized mouse glomerular parietal epithelial cells in culture. J Am Soc Nephrol 19:1879–1890PubMedCrossRef Ohse T, Pippin JW, Vaughan MR, Brinkkoetter PT, Krofft RD, Shankland SJ (2008) Establishment of conditionally immortalized mouse glomerular parietal epithelial cells in culture. J Am Soc Nephrol 19:1879–1890PubMedCrossRef
21.
go back to reference Justo P, Sanz AB, Egido J, Ortiz A (2005) 3,4-Dideoxyglucosone-3-ene induces apoptosis in renal tubular epithelial cells. Diabetes 54:2424–2429PubMedCrossRef Justo P, Sanz AB, Egido J, Ortiz A (2005) 3,4-Dideoxyglucosone-3-ene induces apoptosis in renal tubular epithelial cells. Diabetes 54:2424–2429PubMedCrossRef
22.
go back to reference Susztak K, Raff AC, Schiffer M, Bottinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55:225–233PubMedCrossRef Susztak K, Raff AC, Schiffer M, Bottinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55:225–233PubMedCrossRef
23.
go back to reference Heilbronn R, Weger S (2010) Viral vectors for gene transfer: current status of gene therapeutics. Handb Exp Pharmacol 197:143–170PubMedCrossRef Heilbronn R, Weger S (2010) Viral vectors for gene transfer: current status of gene therapeutics. Handb Exp Pharmacol 197:143–170PubMedCrossRef
24.
go back to reference Conway EM, Van de Wouwer M, Pollefeyt S et al (2002) The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 196:565–577PubMedCentralPubMedCrossRef Conway EM, Van de Wouwer M, Pollefeyt S et al (2002) The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 196:565–577PubMedCentralPubMedCrossRef
25.
go back to reference Li YH, Kuo CH, Shi GY, Wu HL (2012) The role of thrombomodulin lectin-like domain in inflammation. J Biomed Sci 19:34PubMedCrossRef Li YH, Kuo CH, Shi GY, Wu HL (2012) The role of thrombomodulin lectin-like domain in inflammation. J Biomed Sci 19:34PubMedCrossRef
26.
go back to reference Van de Wouwer M, Plaisance S, De Vriese A et al (2006) The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J Thromb Haemost 4:1813–1824PubMedCrossRef Van de Wouwer M, Plaisance S, De Vriese A et al (2006) The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J Thromb Haemost 4:1813–1824PubMedCrossRef
27.
go back to reference Wang H, Vinnikov I, Shahzad K et al (2012) The lectin-like domain of thrombomodulin ameliorates diabetic glomerulopathy via complement inhibition. Thromb Haemost 108:1141–1153PubMedCrossRef Wang H, Vinnikov I, Shahzad K et al (2012) The lectin-like domain of thrombomodulin ameliorates diabetic glomerulopathy via complement inhibition. Thromb Haemost 108:1141–1153PubMedCrossRef
28.
go back to reference Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107PubMedCrossRef Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107PubMedCrossRef
29.
go back to reference Vandanmagsar B, Youm YH, Ravussin A et al (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188PubMedCentralPubMedCrossRef Vandanmagsar B, Youm YH, Ravussin A et al (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188PubMedCentralPubMedCrossRef
30.
go back to reference Masters SL, Dunne A, Subramanian SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11:897–904PubMedCentralPubMedCrossRef Masters SL, Dunne A, Subramanian SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11:897–904PubMedCentralPubMedCrossRef
31.
go back to reference Rustom R, Leggat H, Tomura HR, Hay CR, Bone JM (1998) Plasma thrombomodulin in renal disease: effects of renal function and proteinuria. Clin Nephrol 50:337–341PubMed Rustom R, Leggat H, Tomura HR, Hay CR, Bone JM (1998) Plasma thrombomodulin in renal disease: effects of renal function and proteinuria. Clin Nephrol 50:337–341PubMed
32.
go back to reference Aso Y, Fujiwara Y, Tayama K, Takebayashi K, Inukai T, Takemura Y (2000) Relationship between soluble thrombomodulin in plasma and coagulation or fibrinolysis in type 2 diabetes. Clin Chim Acta Int J Clin Chem 301:135–145CrossRef Aso Y, Fujiwara Y, Tayama K, Takebayashi K, Inukai T, Takemura Y (2000) Relationship between soluble thrombomodulin in plasma and coagulation or fibrinolysis in type 2 diabetes. Clin Chim Acta Int J Clin Chem 301:135–145CrossRef
33.
go back to reference Uehara S, Gotoh K, Handa H (2001) Separation and characterization of the molecular species of thrombomodulin in the plasma of diabetic patients. Thromb Res 104:325–332PubMedCrossRef Uehara S, Gotoh K, Handa H (2001) Separation and characterization of the molecular species of thrombomodulin in the plasma of diabetic patients. Thromb Res 104:325–332PubMedCrossRef
35.
go back to reference Na HK, Surh YJ (2008) Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 46:1271–1278CrossRef Na HK, Surh YJ (2008) Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 46:1271–1278CrossRef
36.
go back to reference Tsai PY, Ka SM, Chang JM et al (2011) Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation. Free Radic Biol Med 51:744–754PubMedCrossRef Tsai PY, Ka SM, Chang JM et al (2011) Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation. Free Radic Biol Med 51:744–754PubMedCrossRef
37.
go back to reference da Silva JL, Zand BA, Yang LM, Sabaawy HE, Lianos E, Abraham NG (2001) Heme oxygenase isoform-specific expression and distribution in the rat kidney. Kidney Int 59:1448–1457PubMedCrossRef da Silva JL, Zand BA, Yang LM, Sabaawy HE, Lianos E, Abraham NG (2001) Heme oxygenase isoform-specific expression and distribution in the rat kidney. Kidney Int 59:1448–1457PubMedCrossRef
38.
go back to reference Hung SY, Liou HC, Kang KH, Wu RM, Wen CC, Fu WM (2008) Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol Pharmacol 74:1564–1575PubMedCrossRef Hung SY, Liou HC, Kang KH, Wu RM, Wen CC, Fu WM (2008) Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol Pharmacol 74:1564–1575PubMedCrossRef
39.
go back to reference Ptilovanciv EO, Fernandes GS, Teixeira LC et al (2013) Heme oxygenase 1 improves glucoses metabolism and kidney histological alterations in diabetic rats. Diabetol Metab Syndr 5:3PubMedCentralPubMedCrossRef Ptilovanciv EO, Fernandes GS, Teixeira LC et al (2013) Heme oxygenase 1 improves glucoses metabolism and kidney histological alterations in diabetic rats. Diabetol Metab Syndr 5:3PubMedCentralPubMedCrossRef
40.
go back to reference Gilbert RE, Marsden PA (2008) Activated protein C and diabetic nephropathy. N Engl J Med 358:1628–1630PubMedCrossRef Gilbert RE, Marsden PA (2008) Activated protein C and diabetic nephropathy. N Engl J Med 358:1628–1630PubMedCrossRef
Metadata
Title
Thrombomodulin domain 1 ameliorates diabetic nephropathy in mice via anti-NF-κB/NLRP3 inflammasome-mediated inflammation, enhancement of NRF2 antioxidant activity and inhibition of apoptosis
Authors
Shun-Min Yang
Shuk-Man Ka
Hua-Lin Wu
Yu-Chuan Yeh
Cheng-Hsiang Kuo
Kuo-Feng Hua
Guey-Yueh Shi
Yi-Jen Hung
Fone-Ching Hsiao
Sung-Sen Yang
Yi-Shing Shieh
Shih-Hua Lin
Chyou-Wei Wei
Jeng-Shin Lee
Chu-Yi Yang
Ann Chen
Publication date
01-02-2014
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 2/2014
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-013-3115-6

Other articles of this Issue 2/2014

Diabetologia 2/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine