Skip to main content
Top
Published in: Diabetologia 10/2013

01-10-2013 | Article

Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes

Authors: Valeria Nesca, Claudiane Guay, Cécile Jacovetti, Véronique Menoud, Marie-Line Peyot, D. Ross Laybutt, Marc Prentki, Romano Regazzi

Published in: Diabetologia | Issue 10/2013

Login to get access

Abstract

Aims/hypothesis

MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease.

Methods

MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells.

Results

MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation.

Conclusions/interpretation

We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Invest 116:1802–1812PubMedCrossRef Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Invest 116:1802–1812PubMedCrossRef
2.
go back to reference Schofield CJ, Sutherland C (2012) Disordered insulin secretion in the development of insulin resistance and type 2 diabetes. Diabet Med 29:972–979PubMedCrossRef Schofield CJ, Sutherland C (2012) Disordered insulin secretion in the development of insulin resistance and type 2 diabetes. Diabet Med 29:972–979PubMedCrossRef
3.
4.
go back to reference Guay C, Jacovetti C, Nesca V, Motterle A, Tugay K, Regazzi R (2012) Emerging roles of non-coding RNAs in pancreatic beta-cell function and dysfunction. Diabetes Obes Metab 14(Suppl 3):12–21PubMedCrossRef Guay C, Jacovetti C, Nesca V, Motterle A, Tugay K, Regazzi R (2012) Emerging roles of non-coding RNAs in pancreatic beta-cell function and dysfunction. Diabetes Obes Metab 14(Suppl 3):12–21PubMedCrossRef
5.
go back to reference Zhao E, Keller MP, Rabaglia ME et al (2009) Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice. Mamm Genome 20:476–485PubMedCrossRef Zhao E, Keller MP, Rabaglia ME et al (2009) Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice. Mamm Genome 20:476–485PubMedCrossRef
6.
go back to reference Lovis P, Roggli E, Laybutt DR et al (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57:2728–2736PubMedCrossRef Lovis P, Roggli E, Laybutt DR et al (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57:2728–2736PubMedCrossRef
7.
go back to reference Esguerra JL, Bolmeson C, Cilio CM, Eliasson L (2011) Differential glucose-regulation of MicroRNAs in pancreatic islets of non-obese type 2 diabetes model Goto–Kakizaki rat. PLoS One 6:e18613PubMedCrossRef Esguerra JL, Bolmeson C, Cilio CM, Eliasson L (2011) Differential glucose-regulation of MicroRNAs in pancreatic islets of non-obese type 2 diabetes model Goto–Kakizaki rat. PLoS One 6:e18613PubMedCrossRef
8.
go back to reference Roggli E, Britan A, Gattesco S et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59:978–986PubMedCrossRef Roggli E, Britan A, Gattesco S et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59:978–986PubMedCrossRef
9.
go back to reference Jacovetti C, Abderrahmani A, Parnaud G et al (2012) MicroRNAs contribute to compensatory beta cell expansion during pregnancy and obesity. J Clin Invest 122:3541–3551PubMedCrossRef Jacovetti C, Abderrahmani A, Parnaud G et al (2012) MicroRNAs contribute to compensatory beta cell expansion during pregnancy and obesity. J Clin Invest 122:3541–3551PubMedCrossRef
10.
go back to reference Chan JY, Luzuriaga J, Bensellam M, Biden TJ, Laybutt DR (2013) Failure of the adaptive unfolded protein response in islets of obese mice is linked with abnormalities in beta-cell gene expression and progression to diabetes. Diabetes 62:1557–1568PubMedCrossRef Chan JY, Luzuriaga J, Bensellam M, Biden TJ, Laybutt DR (2013) Failure of the adaptive unfolded protein response in islets of obese mice is linked with abnormalities in beta-cell gene expression and progression to diabetes. Diabetes 62:1557–1568PubMedCrossRef
11.
go back to reference Peyot ML, Pepin E, Lamontagne J et al (2010) Beta-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes 59:2178–2187PubMedCrossRef Peyot ML, Pepin E, Lamontagne J et al (2010) Beta-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes 59:2178–2187PubMedCrossRef
12.
go back to reference Gotoh M, Maki T, Satomi S et al (1987) Reproducible high yield of rat islets by stationary in vitro digestion following pancreatic ductal or portal venous collagenase injection. Transplantation 43:725–730PubMedCrossRef Gotoh M, Maki T, Satomi S et al (1987) Reproducible high yield of rat islets by stationary in vitro digestion following pancreatic ductal or portal venous collagenase injection. Transplantation 43:725–730PubMedCrossRef
13.
go back to reference Lilla V, Webb G, Rickenbach K et al (2003) Differential gene expression in well-regulated and dysregulated pancreatic beta-cell (MIN6) sublines. Endocrinology 144:1368–1379PubMedCrossRef Lilla V, Webb G, Rickenbach K et al (2003) Differential gene expression in well-regulated and dysregulated pancreatic beta-cell (MIN6) sublines. Endocrinology 144:1368–1379PubMedCrossRef
14.
go back to reference Roggli E, Gattesco S, Caille D et al (2012) Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes 61:1742–1751PubMedCrossRef Roggli E, Gattesco S, Caille D et al (2012) Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes 61:1742–1751PubMedCrossRef
15.
go back to reference Roche E, Buteau J, Aniento I, Reig JA, Soria B, Prentki M (1999) Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic beta-cell line INS-1. Diabetes 48:2007–2014PubMedCrossRef Roche E, Buteau J, Aniento I, Reig JA, Soria B, Prentki M (1999) Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic beta-cell line INS-1. Diabetes 48:2007–2014PubMedCrossRef
16.
go back to reference Coppola T, Frantz C, Perret-Menoud V, Gattesco S, Hirling H, Regazzi R (2002) Pancreatic beta-cell protein granuphilin binds Rab3 and Munc-18 and controls exocytosis. Mol Biol Cell 13:1906–1915PubMedCrossRef Coppola T, Frantz C, Perret-Menoud V, Gattesco S, Hirling H, Regazzi R (2002) Pancreatic beta-cell protein granuphilin binds Rab3 and Munc-18 and controls exocytosis. Mol Biol Cell 13:1906–1915PubMedCrossRef
17.
go back to reference Kobayashi K, Forte TM, Taniguchi S, Ishida BY, Oka K, Chan L (2000) The db/db mouse, a model for diabetic dyslipidemia: molecular characterization and effects of Western diet feeding. Metabolism 49:22–31PubMedCrossRef Kobayashi K, Forte TM, Taniguchi S, Ishida BY, Oka K, Chan L (2000) The db/db mouse, a model for diabetic dyslipidemia: molecular characterization and effects of Western diet feeding. Metabolism 49:22–31PubMedCrossRef
18.
go back to reference Melkman-Zehavi T, Oren R, Kredo-Russo S et al (2011) miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J 30:835–845PubMedCrossRef Melkman-Zehavi T, Oren R, Kredo-Russo S et al (2011) miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J 30:835–845PubMedCrossRef
19.
go back to reference Kornfeld JW, Baitzel C, Konner AC et al (2013) Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494:111–115PubMedCrossRef Kornfeld JW, Baitzel C, Konner AC et al (2013) Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494:111–115PubMedCrossRef
20.
go back to reference Lupi R, Del Prato S (2008) Beta-cell apoptosis in type 2 diabetes: quantitative and functional consequences. Diabetes Metab 34(Suppl 2):S56–S64PubMedCrossRef Lupi R, Del Prato S (2008) Beta-cell apoptosis in type 2 diabetes: quantitative and functional consequences. Diabetes Metab 34(Suppl 2):S56–S64PubMedCrossRef
21.
go back to reference Fornari F, Milazzo M, Chieco P et al (2010) MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 70:5184–5193PubMedCrossRef Fornari F, Milazzo M, Chieco P et al (2010) MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 70:5184–5193PubMedCrossRef
22.
go back to reference Xie J, Herbert TP (2012) The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic beta-cell mass: implications in the development of type-2 diabetes. Cell Mol Life Sci 69:1289–1304PubMedCrossRef Xie J, Herbert TP (2012) The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic beta-cell mass: implications in the development of type-2 diabetes. Cell Mol Life Sci 69:1289–1304PubMedCrossRef
23.
go back to reference Mellado-Gil J, Rosa TC, Demirci C et al (2011) Disruption of hepatocyte growth factor/c-Met signaling enhances pancreatic beta-cell death and accelerates the onset of diabetes. Diabetes 60:525–536PubMedCrossRef Mellado-Gil J, Rosa TC, Demirci C et al (2011) Disruption of hepatocyte growth factor/c-Met signaling enhances pancreatic beta-cell death and accelerates the onset of diabetes. Diabetes 60:525–536PubMedCrossRef
24.
go back to reference Liu Y, Tanabe K, Baronnier D et al (2010) Conditional ablation of Gsk-3beta in islet beta cells results in expanded mass and resistance to fat feeding-induced diabetes in mice. Diabetologia 53:2600–2610PubMedCrossRef Liu Y, Tanabe K, Baronnier D et al (2010) Conditional ablation of Gsk-3beta in islet beta cells results in expanded mass and resistance to fat feeding-induced diabetes in mice. Diabetologia 53:2600–2610PubMedCrossRef
25.
go back to reference Liu Z, Tanabe K, Bernal-Mizrachi E, Permutt MA (2008) Mice with beta cell overexpression of glycogen synthase kinase-3beta have reduced beta cell mass and proliferation. Diabetologia 51:623–631PubMedCrossRef Liu Z, Tanabe K, Bernal-Mizrachi E, Permutt MA (2008) Mice with beta cell overexpression of glycogen synthase kinase-3beta have reduced beta cell mass and proliferation. Diabetologia 51:623–631PubMedCrossRef
26.
go back to reference Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840PubMedCrossRef Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840PubMedCrossRef
27.
go back to reference Davis DB, Lavine JA, Suhonen JI et al (2010) FoxM1 is up-regulated by obesity and stimulates beta-cell proliferation. Mol Endocrinol 24:1822–1834PubMedCrossRef Davis DB, Lavine JA, Suhonen JI et al (2010) FoxM1 is up-regulated by obesity and stimulates beta-cell proliferation. Mol Endocrinol 24:1822–1834PubMedCrossRef
28.
go back to reference Hang Y, Stein R (2011) MafA and MafB activity in pancreatic beta cells. Trends Endocrinol Metab 22:364–373PubMedCrossRef Hang Y, Stein R (2011) MafA and MafB activity in pancreatic beta cells. Trends Endocrinol Metab 22:364–373PubMedCrossRef
29.
go back to reference Kulkarni RN, Jhala US, Winnay JN, Krajewski S, Montminy M, Kahn CR (2004) PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance. J Clin Invest 114:828–836PubMed Kulkarni RN, Jhala US, Winnay JN, Krajewski S, Montminy M, Kahn CR (2004) PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance. J Clin Invest 114:828–836PubMed
30.
go back to reference Bolmeson C, Esguerra JL, Salehi A, Speidel D, Eliasson L, Cilio CM (2011) Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects. Biochem Biophys Res Commun 404:16–22PubMedCrossRef Bolmeson C, Esguerra JL, Salehi A, Speidel D, Eliasson L, Cilio CM (2011) Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects. Biochem Biophys Res Commun 404:16–22PubMedCrossRef
31.
go back to reference Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389(3):305–312PubMedCrossRef Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389(3):305–312PubMedCrossRef
32.
go back to reference Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R (2006) MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281:26932–26942PubMedCrossRef Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R (2006) MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281:26932–26942PubMedCrossRef
33.
go back to reference Baroukh N, Ravier MA, Loder MK et al (2007) MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282:19575–19588PubMedCrossRef Baroukh N, Ravier MA, Loder MK et al (2007) MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282:19575–19588PubMedCrossRef
34.
go back to reference Poy MN, Hausser J, Trajkovski M et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 106:5813–5818PubMedCrossRef Poy MN, Hausser J, Trajkovski M et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 106:5813–5818PubMedCrossRef
35.
go back to reference Nudelman AS, DiRocco DP, Lambert TJ et al (2010) Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 20:492–498PubMed Nudelman AS, DiRocco DP, Lambert TJ et al (2010) Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 20:492–498PubMed
36.
go back to reference Remenyi J, Hunter CJ, Cole C et al (2010) Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J 428:281–291PubMedCrossRef Remenyi J, Hunter CJ, Cole C et al (2010) Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J 428:281–291PubMedCrossRef
37.
go back to reference Pathania M, Torres-Reveron J, Yan L et al (2012) miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PLoS One 7:e38174PubMedCrossRef Pathania M, Torres-Reveron J, Yan L et al (2012) miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PLoS One 7:e38174PubMedCrossRef
38.
go back to reference Scott HL, Tamagnini F, Narduzzo KE et al (2012) MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. Eur J Neurosci 36:2941–2948PubMedCrossRef Scott HL, Tamagnini F, Narduzzo KE et al (2012) MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. Eur J Neurosci 36:2941–2948PubMedCrossRef
39.
go back to reference Lin LF, Chiu SP, Wu MJ, Chen PY, Yen JH (2012) Luteolin induces microRNA-132 expression and modulates neurite outgrowth in PC12 cells. PLoS One 7:e43304PubMedCrossRef Lin LF, Chiu SP, Wu MJ, Chen PY, Yen JH (2012) Luteolin induces microRNA-132 expression and modulates neurite outgrowth in PC12 cells. PLoS One 7:e43304PubMedCrossRef
40.
go back to reference Numakawa T, Yamamoto N, Chiba S et al (2011) Growth factors stimulate expression of neuronal and glial miR-132. Neurosci Lett 505:242–247PubMedCrossRef Numakawa T, Yamamoto N, Chiba S et al (2011) Growth factors stimulate expression of neuronal and glial miR-132. Neurosci Lett 505:242–247PubMedCrossRef
41.
go back to reference Keller DM, Clark EA, Goodman RH (2012) Regulation of microRNA-375 by cAMP in pancreatic beta-cells. Mol Endocrinol 26:989–999PubMedCrossRef Keller DM, Clark EA, Goodman RH (2012) Regulation of microRNA-375 by cAMP in pancreatic beta-cells. Mol Endocrinol 26:989–999PubMedCrossRef
42.
go back to reference Hagman DK, Hays LB, Parazzoli SD, Poitout V (2005) Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem 280:32413–32418PubMedCrossRef Hagman DK, Hays LB, Parazzoli SD, Poitout V (2005) Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem 280:32413–32418PubMedCrossRef
43.
go back to reference Matsuoka TA, Kaneto H, Miyatsuka T et al (2010) Regulation of MafA expression in pancreatic beta-cells in db/db mice with diabetes. Diabetes 59:1709–1720PubMedCrossRef Matsuoka TA, Kaneto H, Miyatsuka T et al (2010) Regulation of MafA expression in pancreatic beta-cells in db/db mice with diabetes. Diabetes 59:1709–1720PubMedCrossRef
44.
go back to reference Butler AE, Robertson RP, Hernandez R, Matveyenko AV, Gurlo T, Butler PC (2012) Beta cell nuclear musculoaponeurotic fibrosarcoma oncogene family A (MafA) is deficient in type 2 diabetes. Diabetologia 55:2985–2988PubMedCrossRef Butler AE, Robertson RP, Hernandez R, Matveyenko AV, Gurlo T, Butler PC (2012) Beta cell nuclear musculoaponeurotic fibrosarcoma oncogene family A (MafA) is deficient in type 2 diabetes. Diabetologia 55:2985–2988PubMedCrossRef
45.
go back to reference Ru P, Steele R, Hsueh EC, Ray RB (2011) Anti-miR-203 upregulates SOCS3 expression in breast cancer cells and enhances cisplatin chemosensitivity. Genes Cancer 2:720–727PubMedCrossRef Ru P, Steele R, Hsueh EC, Ray RB (2011) Anti-miR-203 upregulates SOCS3 expression in breast cancer cells and enhances cisplatin chemosensitivity. Genes Cancer 2:720–727PubMedCrossRef
46.
go back to reference Liu Y, Han Y, Zhang H et al (2012) Synthetic miRNA-mowers targeting miR-183-96-182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells. PLoS One 7:e52280PubMedCrossRef Liu Y, Han Y, Zhang H et al (2012) Synthetic miRNA-mowers targeting miR-183-96-182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells. PLoS One 7:e52280PubMedCrossRef
47.
go back to reference Li KK, Pang JC, Lau KM et al (2012) MiR-383 is downregulated in medulloblastoma and targets peroxiredoxin 3 (PRDX3). Brain Pathol 23(4):413–425CrossRef Li KK, Pang JC, Lau KM et al (2012) MiR-383 is downregulated in medulloblastoma and targets peroxiredoxin 3 (PRDX3). Brain Pathol 23(4):413–425CrossRef
48.
go back to reference Kim S, Lee UJ, Kim MN et al (2008) MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J Biol Chem 283:18158–18166PubMedCrossRef Kim S, Lee UJ, Kim MN et al (2008) MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J Biol Chem 283:18158–18166PubMedCrossRef
49.
go back to reference Mori H, Inoki K, Opland D et al (2009) Critical roles for the TSC-mTOR pathway in beta-cell function. Am J Physiol Endocrinol Metab 297:E1013–E1022PubMedCrossRef Mori H, Inoki K, Opland D et al (2009) Critical roles for the TSC-mTOR pathway in beta-cell function. Am J Physiol Endocrinol Metab 297:E1013–E1022PubMedCrossRef
50.
go back to reference Las G, Shirihai OS (2010) The role of autophagy in beta-cell lipotoxicity and type 2 diabetes. Diabetes Obes Metab 12(Suppl 2):15–19PubMedCrossRef Las G, Shirihai OS (2010) The role of autophagy in beta-cell lipotoxicity and type 2 diabetes. Diabetes Obes Metab 12(Suppl 2):15–19PubMedCrossRef
Metadata
Title
Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes
Authors
Valeria Nesca
Claudiane Guay
Cécile Jacovetti
Véronique Menoud
Marie-Line Peyot
D. Ross Laybutt
Marc Prentki
Romano Regazzi
Publication date
01-10-2013
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 10/2013
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-013-2993-y

Other articles of this Issue 10/2013

Diabetologia 10/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine