Skip to main content
Top
Published in: Diabetologia 2/2013

01-02-2013 | Article

Identification of the antibiotic ionomycin as an unexpected peroxisome proliferator-activated receptor γ (PPARγ) ligand with a unique binding mode and effective glucose-lowering activity in a mouse model of diabetes

Authors: W. Zheng, X. Feng, L. Qiu, Z. Pan, R. Wang, S. Lin, D. Hou, L. Jin, Y. Li

Published in: Diabetologia | Issue 2/2013

Login to get access

Abstract

Aims/hypothesis

Existing thiazolidinedione (TZD) drugs for diabetes have severe side effects. The aim of this study is to develop alternative peroxisome proliferator-activated receptor γ (PPARγ) ligands that retain the benefits in improving insulin resistance but with reduced side effects.

Methods

We used AlphaScreen assay to screen for new PPARγ ligands from compound libraries. In vitro biochemical binding affinity assay and in vivo cell-based reporter assay were used to validate ionomycin as a partial ligand of PPARγ. A mouse model of diabetes was used to assess the effects of ionomycin in improving insulin sensitivity. Crystal structure of PPARγ complexed with ionomycin revealed the unique binding mode of ionomycin, which elucidated the molecular mechanisms allowing the discrimination of ionomycin from TZDs.

Results

We found that the antibiotic ionomycin is a novel modulating ligand for PPARγ. Both the transactivation and binding activity of PPARγ by ionomycin can be blocked by PPARγ specific antagonist GW9662. Ionomycin interacts with the PPARγ ligand-binding domain in a unique binding mode with properties and epitopes distinct from those of TZD drugs. Ionomycin treatment effectively improved hyperglycaemia and insulin resistance, but had reduced side effects compared with TZDs in the mouse model of diabetes. In addition, ionomycin effectively blocked the phosphorylation of PPARγ at Ser273 by cyclin-dependent kinase 5 both in vitro and in vivo.

Conclusions/interpretation

Our studies suggest that ionomycin may represent a unique template for designing novel PPARγ ligands with advantages over current TZD drugs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Michalik L, Auwerx J, Berger JP et al (2006) International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 58:726–741PubMedCrossRef Michalik L, Auwerx J, Berger JP et al (2006) International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 58:726–741PubMedCrossRef
2.
go back to reference Jin L, Li Y (2010) Structural and functional insights into nuclear receptor signaling. Adv Drug Deliv Rev 62:1218–1226PubMedCrossRef Jin L, Li Y (2010) Structural and functional insights into nuclear receptor signaling. Adv Drug Deliv Rev 62:1218–1226PubMedCrossRef
3.
go back to reference Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312PubMedCrossRef Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312PubMedCrossRef
4.
go back to reference Kuda O, Jelenik T, Jilkova Z et al (2009) n-3 fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia 52:941–951PubMedCrossRef Kuda O, Jelenik T, Jilkova Z et al (2009) n-3 fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia 52:941–951PubMedCrossRef
5.
go back to reference Lennon R, Welsh GI, Singh A et al (2009) Rosiglitazone enhances glucose uptake in glomerular podocytes using the glucose transporter GLUT1. Diabetologia 52:1944–1952PubMedCrossRef Lennon R, Welsh GI, Singh A et al (2009) Rosiglitazone enhances glucose uptake in glomerular podocytes using the glucose transporter GLUT1. Diabetologia 52:1944–1952PubMedCrossRef
6.
go back to reference Serrano-Marco L, Barroso E, El Kochairi I et al (2012) The peroxisome proliferator-activated receptor (PPAR) β/δ agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia 55:743–751PubMedCrossRef Serrano-Marco L, Barroso E, El Kochairi I et al (2012) The peroxisome proliferator-activated receptor (PPAR) β/δ agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia 55:743–751PubMedCrossRef
8.
go back to reference Wang YX (2010) PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res 20:124–137PubMedCrossRef Wang YX (2010) PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res 20:124–137PubMedCrossRef
9.
go back to reference Weismann D, Erion DM, Ignatova-Todorava I et al (2011) Knockdown of the gene encoding Drosophila tribbles homologue 3 (Trib3) improves insulin sensitivity through peroxisome proliferator-activated receptor-γ (PPAR-γ) activation in a rat model of insulin resistance. Diabetologia 54:935–944PubMedCrossRef Weismann D, Erion DM, Ignatova-Todorava I et al (2011) Knockdown of the gene encoding Drosophila tribbles homologue 3 (Trib3) improves insulin sensitivity through peroxisome proliferator-activated receptor-γ (PPAR-γ) activation in a rat model of insulin resistance. Diabetologia 54:935–944PubMedCrossRef
11.
go back to reference Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471PubMedCrossRef Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471PubMedCrossRef
12.
go back to reference Zanchi A, Maillard M, Jornayvaz FR et al (2010) Effects of the peroxisome proliferator-activated receptor (PPAR)-gamma agonist pioglitazone on renal and hormonal responses to salt in diabetic and hypertensive individuals. Diabetologia 53:1568–1575PubMedCrossRef Zanchi A, Maillard M, Jornayvaz FR et al (2010) Effects of the peroxisome proliferator-activated receptor (PPAR)-gamma agonist pioglitazone on renal and hormonal responses to salt in diabetic and hypertensive individuals. Diabetologia 53:1568–1575PubMedCrossRef
13.
14.
go back to reference Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45:120–159PubMedCrossRef Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45:120–159PubMedCrossRef
15.
go back to reference Moras D, Gronemeyer H (1998) The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol 10:384–391PubMedCrossRef Moras D, Gronemeyer H (1998) The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol 10:384–391PubMedCrossRef
16.
go back to reference Allen T, Zhang F, Moodie SA et al (2006) Halofenate is a selective peroxisome proliferator-activated receptor gamma modulator with antidiabetic activity. Diabetes 55:2523–2533PubMedCrossRef Allen T, Zhang F, Moodie SA et al (2006) Halofenate is a selective peroxisome proliferator-activated receptor gamma modulator with antidiabetic activity. Diabetes 55:2523–2533PubMedCrossRef
17.
go back to reference Zhang F, Lavan BE, Gregoire FM (2007) Selective modulators of PPAR-γ activity: molecular aspects related to obesity and side-effects. PPAR Res 2007:32696PubMedCrossRef Zhang F, Lavan BE, Gregoire FM (2007) Selective modulators of PPAR-γ activity: molecular aspects related to obesity and side-effects. PPAR Res 2007:32696PubMedCrossRef
18.
go back to reference Higgins LS, Depaoli AM (2010) Selective peroxisome proliferator-activated receptor gamma (PPARgamma) modulation as a strategy for safer therapeutic PPARgamma activation. Am J Clin Nutr 91:267S–272SPubMedCrossRef Higgins LS, Depaoli AM (2010) Selective peroxisome proliferator-activated receptor gamma (PPARgamma) modulation as a strategy for safer therapeutic PPARgamma activation. Am J Clin Nutr 91:267S–272SPubMedCrossRef
19.
go back to reference Choi JH, Banks AS, Estall JL et al (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466:451–456PubMedCrossRef Choi JH, Banks AS, Estall JL et al (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466:451–456PubMedCrossRef
20.
21.
go back to reference Li P, Fan W, Xu J et al (2011) Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity. Cell 147:815–826PubMedCrossRef Li P, Fan W, Xu J et al (2011) Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity. Cell 147:815–826PubMedCrossRef
22.
go back to reference Otwinowski Z, Minor W (1997) Processing of x-ray diffraction data collected in oscillation mode. Method Enzymol 276:307–326CrossRef Otwinowski Z, Minor W (1997) Processing of x-ray diffraction data collected in oscillation mode. Method Enzymol 276:307–326CrossRef
23.
go back to reference Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132PubMedCrossRef Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132PubMedCrossRef
24.
go back to reference Li Y, Suino K, Daugherty J, Xu HE (2005) Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor. Mol Cell 19:367–380PubMedCrossRef Li Y, Suino K, Daugherty J, Xu HE (2005) Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor. Mol Cell 19:367–380PubMedCrossRef
25.
go back to reference Li Y, Choi M, Cavey G et al (2005) Crystallographic identification and functional characterization of phospholipids as ligands for the orphan nuclear receptor steroidogenic factor-1. Mol Cell 17:491–502PubMedCrossRef Li Y, Choi M, Cavey G et al (2005) Crystallographic identification and functional characterization of phospholipids as ligands for the orphan nuclear receptor steroidogenic factor-1. Mol Cell 17:491–502PubMedCrossRef
26.
go back to reference Jin L, Lin S, Rong H et al (2011) Structural basis for iloprost as a dual peroxisome proliferator-activated receptor alpha/delta agonist. J Biol Chem 286:31473–31479PubMedCrossRef Jin L, Lin S, Rong H et al (2011) Structural basis for iloprost as a dual peroxisome proliferator-activated receptor alpha/delta agonist. J Biol Chem 286:31473–31479PubMedCrossRef
27.
go back to reference Lin S, Han Y, Shi Y et al (2012) Revealing a steroid receptor ligand as a unique PPARgamma agonist. Cell Res 22:746–756PubMedCrossRef Lin S, Han Y, Shi Y et al (2012) Revealing a steroid receptor ligand as a unique PPARgamma agonist. Cell Res 22:746–756PubMedCrossRef
28.
go back to reference Leesnitzer LM, Parks DJ, Bledsoe RK et al (2002) Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41:6640–6650PubMedCrossRef Leesnitzer LM, Parks DJ, Bledsoe RK et al (2002) Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41:6640–6650PubMedCrossRef
29.
go back to reference Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79:1147–1156PubMedCrossRef Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79:1147–1156PubMedCrossRef
30.
go back to reference Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8:1224–1234PubMedCrossRef Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8:1224–1234PubMedCrossRef
31.
go back to reference Gampe RT Jr, Montana VG, Lambert MH et al (2000) Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell 5:545–555PubMedCrossRef Gampe RT Jr, Montana VG, Lambert MH et al (2000) Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell 5:545–555PubMedCrossRef
32.
go back to reference Chandra V, Huang P, Hamuro Y et al (2008) Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456:350–356PubMedCrossRef Chandra V, Huang P, Hamuro Y et al (2008) Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456:350–356PubMedCrossRef
33.
go back to reference Nolte RT, Wisely GB, Westin S et al (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143PubMedCrossRef Nolte RT, Wisely GB, Westin S et al (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143PubMedCrossRef
34.
go back to reference Liu C, Hermann TE (1978) Characterization of ionomycin as a calcium ionophore. J Biol Chem 253:5892–5894PubMed Liu C, Hermann TE (1978) Characterization of ionomycin as a calcium ionophore. J Biol Chem 253:5892–5894PubMed
35.
go back to reference Oberfield JL, Collins JL, Holmes CP et al (1999) A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation. Proc Natl Acad Sci USA 96:6102–6106PubMedCrossRef Oberfield JL, Collins JL, Holmes CP et al (1999) A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation. Proc Natl Acad Sci USA 96:6102–6106PubMedCrossRef
36.
go back to reference Itoh T, Fairall L, Amin K et al (2008) Structural basis for the activation of PPARgamma by oxidized fatty acids. Nat Struct Mol Biol 15:924–931PubMedCrossRef Itoh T, Fairall L, Amin K et al (2008) Structural basis for the activation of PPARgamma by oxidized fatty acids. Nat Struct Mol Biol 15:924–931PubMedCrossRef
37.
go back to reference Li Y, Zhang J, Schopfer FJ et al (2008) Molecular recognition of nitrated fatty acids by PPAR gamma. Nat Struct Mol Biol 15:865–867PubMedCrossRef Li Y, Zhang J, Schopfer FJ et al (2008) Molecular recognition of nitrated fatty acids by PPAR gamma. Nat Struct Mol Biol 15:865–867PubMedCrossRef
38.
go back to reference Weidner C, de Groot JC, Prasad A et al (2012) Amorfrutins are potent antidiabetic dietary natural products. Proc Natl Acad Sci USA 109:7257–7262PubMedCrossRef Weidner C, de Groot JC, Prasad A et al (2012) Amorfrutins are potent antidiabetic dietary natural products. Proc Natl Acad Sci USA 109:7257–7262PubMedCrossRef
Metadata
Title
Identification of the antibiotic ionomycin as an unexpected peroxisome proliferator-activated receptor γ (PPARγ) ligand with a unique binding mode and effective glucose-lowering activity in a mouse model of diabetes
Authors
W. Zheng
X. Feng
L. Qiu
Z. Pan
R. Wang
S. Lin
D. Hou
L. Jin
Y. Li
Publication date
01-02-2013
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 2/2013
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-012-2777-9

Other articles of this Issue 2/2013

Diabetologia 2/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine