Skip to main content
Top
Published in: Diabetologia 7/2012

01-07-2012 | Then and Now

The incretin hormones: from scientific discovery to practical therapeutics

Authors: S. Mudaliar, R. R. Henry

Published in: Diabetologia | Issue 7/2012

Login to get access

Abstract

The incretins are gut hormones secreted in response to nutrient/carbohydrate ingestion and act on the pancreatic beta cell to amplify glucose-stimulated insulin secretion. Incretin hormone-based treatments for patients with type 2 diabetes represent a major advance in diabetes therapeutics. The ability of the incretin agents (glucagon-like peptide 1 [GLP-1] agonists and dipeptidyl peptidase IV [DPP-4] inhibitors) to improve glycaemia with a low associated risk of hypoglycaemia, together with beneficial/neutral effects on body weight, offers a significant advantage for both patients and treating clinicians. In this edition of ‘Then and Now,’ it is useful to look back 25 years and reflect upon the developments in this field since Nauck and colleagues published two seminal papers. In 1986 they first documented a reduced incretin effect in patients with type 2 diabetes (Diabetologia 29:46–52), and then in 1993 they demonstrated that, in patients with poorly controlled type 2 diabetes, a single exogenous infusion of an incretin (GLP-1) increased insulin levels in a glucose-dependent manner and normalised fasting hyperglycaemia (Diabetologia 36:741–744). In the ensuing 26 years, progress in the field of incretin hormones has resulted in a greater understanding of the relative roles of GLP-1 and glucose-dependent insulinotropic polypeptide secretion and activity in the pathogenesis of type 2 diabetes and the important recognition that native GLP-1 is quickly degraded by the ubiquitous protease DPP-4. This has led to the development of GLP-1 agonists that are resistant to degradation by DPP-4 and of selective inhibitors of DPP-4 activity as therapeutic agents. GLP-1 agonists (exenatide and liraglutide) and DPP-4 inhibitors (sitagliptin, vildagliptin, saxagliptin and linagliptin) currently represent effective treatment options for patients with type 2 diabetes. Several additional agents are in the pipeline, including longer acting DPP-4-resistant GLP-1 agonists. More exciting, however, is the increasing recognition that the incretin agents have numerous extra-glycaemic effects that could translate into potential cardiovascular and other benefits.
Literature
1.
go back to reference Nauck M, Stöckmann F, Ebert R, Creutzfeldt W (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29:46–52PubMedCrossRef Nauck M, Stöckmann F, Ebert R, Creutzfeldt W (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29:46–52PubMedCrossRef
2.
go back to reference Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2:1300–1304PubMedCrossRef Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2:1300–1304PubMedCrossRef
3.
go back to reference Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307PubMedCrossRef Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307PubMedCrossRef
4.
go back to reference Nauck MA, Kleine N, Ørskov C, Holst JJ, Willms B, Creutzfeldt W (1993) Normalisation of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7–36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36:741–744PubMedCrossRef Nauck MA, Kleine N, Ørskov C, Holst JJ, Willms B, Creutzfeldt W (1993) Normalisation of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7–36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36:741–744PubMedCrossRef
5.
go back to reference Nauck MA (2011) Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am J Med 124(1 Suppl):S3–S18PubMedCrossRef Nauck MA (2011) Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am J Med 124(1 Suppl):S3–S18PubMedCrossRef
6.
go back to reference Nauck MA, Vardarli I, Deacon CF, Holst JJ, Meier JJ (2011) Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia 54:10–18PubMedCrossRef Nauck MA, Vardarli I, Deacon CF, Holst JJ, Meier JJ (2011) Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia 54:10–18PubMedCrossRef
7.
go back to reference Nauck MA, Siemsglüss J, Orskov C, Holst JJ (1996) Release of glucagon-like peptide 1 (GLP-1 [7–36 amide]), gastric inhibitory polypeptide (GIP) and insulin in response to oral glucose after upper and lower intestinal resections. Z Gastroenterol 34:159–166PubMed Nauck MA, Siemsglüss J, Orskov C, Holst JJ (1996) Release of glucagon-like peptide 1 (GLP-1 [7–36 amide]), gastric inhibitory polypeptide (GIP) and insulin in response to oral glucose after upper and lower intestinal resections. Z Gastroenterol 34:159–166PubMed
8.
go back to reference Mortensen K, Christensen LL, Holst JJ, Orskov C (2003) GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 114:189–196PubMedCrossRef Mortensen K, Christensen LL, Holst JJ, Orskov C (2003) GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 114:189–196PubMedCrossRef
9.
go back to reference Mentis N, Vardarli I, Köthe LD et al (2011) GIP does not potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes. Diabetes 60:1270–1276PubMedCrossRef Mentis N, Vardarli I, Köthe LD et al (2011) GIP does not potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes. Diabetes 60:1270–1276PubMedCrossRef
10.
go back to reference Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705PubMedCrossRef Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705PubMedCrossRef
11.
go back to reference Chia CW, Egan JM (2008) Incretin-based therapies in type 2 diabetes mellitus. J Clin Endocrinol Metab 93:3703–3716PubMedCrossRef Chia CW, Egan JM (2008) Incretin-based therapies in type 2 diabetes mellitus. J Clin Endocrinol Metab 93:3703–3716PubMedCrossRef
12.
go back to reference Waget A, Cabou C, Masseboeuf M et al (2011) Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology 152:3018–3029PubMedCrossRef Waget A, Cabou C, Masseboeuf M et al (2011) Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology 152:3018–3029PubMedCrossRef
13.
go back to reference Fonseca V, Schweizer A, Albrecht D, Baron MA, Chang I, Dejager S (2007) Addition of vildagliptin to insulin improves glycaemic control in type 2 diabetes. Diabetologia 50:1148–1155PubMedCrossRef Fonseca V, Schweizer A, Albrecht D, Baron MA, Chang I, Dejager S (2007) Addition of vildagliptin to insulin improves glycaemic control in type 2 diabetes. Diabetologia 50:1148–1155PubMedCrossRef
14.
go back to reference Fonseca V, Baron M, Shao Q, Dejager S (2008) Sustained efficacy and reduced hypoglycemia during one year of treatment with vildagliptin added to insulin in patients with type 2 diabetes mellitus. Horm Metab Res 40:427–430PubMedCrossRef Fonseca V, Baron M, Shao Q, Dejager S (2008) Sustained efficacy and reduced hypoglycemia during one year of treatment with vildagliptin added to insulin in patients with type 2 diabetes mellitus. Horm Metab Res 40:427–430PubMedCrossRef
15.
go back to reference Salehi M, Prigeon RL, D’Alessio DA (2011) Gastric bypass surgery enhances glucagon-like peptide 1-stimulated postprandial insulin secretion in humans. Diabetes 60:2308–2314PubMedCrossRef Salehi M, Prigeon RL, D’Alessio DA (2011) Gastric bypass surgery enhances glucagon-like peptide 1-stimulated postprandial insulin secretion in humans. Diabetes 60:2308–2314PubMedCrossRef
16.
go back to reference Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117:2340–2350PubMedCrossRef Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117:2340–2350PubMedCrossRef
17.
go back to reference Li Y, Duffy KB, Ottinger MA et al (2010) GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis 19:1205–1219PubMed Li Y, Duffy KB, Ottinger MA et al (2010) GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis 19:1205–1219PubMed
18.
go back to reference Drucker DJ, Sherman SI, Bergenstal RM, Buse JB (2011) The safety of incretin-based therapies—review of the scientific evidence. J Clin Endocrinol Metab 96:2027–2031PubMedCrossRef Drucker DJ, Sherman SI, Bergenstal RM, Buse JB (2011) The safety of incretin-based therapies—review of the scientific evidence. J Clin Endocrinol Metab 96:2027–2031PubMedCrossRef
Metadata
Title
The incretin hormones: from scientific discovery to practical therapeutics
Authors
S. Mudaliar
R. R. Henry
Publication date
01-07-2012
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 7/2012
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-012-2561-x

Other articles of this Issue 7/2012

Diabetologia 7/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine