Skip to main content
Top
Published in: Diabetologia 6/2012

01-06-2012 | Article

Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions

Authors: M. Heni, S. Kullmann, C. Ketterer, M. Guthoff, K. Linder, R. Wagner, K. T. Stingl, R. Veit, H. Staiger, H.-U. Häring, H. Preissl, A. Fritsche

Published in: Diabetologia | Issue 6/2012

Login to get access

Abstract

Aims/hypothesis

Impaired insulin sensitivity is a major factor leading to type 2 diabetes. Animal studies suggest that the brain is involved in the regulation of insulin sensitivity. We investigated whether insulin action in the human brain regulates peripheral insulin sensitivity and examined which brain areas are involved.

Methods

Insulin and placebo were given intranasally. Plasma glucose, insulin and C-peptide were measured in 103 participants at 0, 30 and 60 min. A subgroup (n = 12) was also studied with functional MRI, and blood sampling at 0, 30 and 120 min. For each time-point, the HOMA of insulin resistance (HOMA-IR) was calculated as an inverse estimate of peripheral insulin sensitivity.

Results

Plasma insulin increased and subsequently decreased. This excursion was accompanied by slightly decreased plasma glucose, resulting in an initially increased HOMA-IR. At 1 h after insulin spray, the HOMA-IR subsequently decreased and remained lower up to 120 min. An increase in hypothalamic activity was observed, which correlated with the increased HOMA-IR at 30 min post-spray. Activity in the putamen, right insula and orbitofrontal cortex correlated with the decreased HOMA-IR at 120 min post-spray.

Conclusions/interpretation

Central insulin action in specific brain areas, including the hypothalamus, may time-dependently regulate peripheral insulin sensitivity. This introduces a potential novel mechanism for the regulation of peripheral insulin sensitivity and underlines the importance of cerebral insulin action for the whole organism.
Appendix
Available only for authorised users
Literature
1.
go back to reference Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR (1992) Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340:925–929PubMedCrossRef Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR (1992) Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340:925–929PubMedCrossRef
2.
go back to reference DeFronzo RA, Ferrannini E (1991) Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14:173–194PubMedCrossRef DeFronzo RA, Ferrannini E (1991) Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14:173–194PubMedCrossRef
3.
go back to reference Godsland IF (2010) Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin Sci (Lond) 118:315–332CrossRef Godsland IF (2010) Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin Sci (Lond) 118:315–332CrossRef
4.
go back to reference Ausk KJ, Boyko EJ, Ioannou GN (2010) Insulin resistance predicts mortality in nondiabetic individuals in the US. Diabetes Care 33:1179–1185PubMedCrossRef Ausk KJ, Boyko EJ, Ioannou GN (2010) Insulin resistance predicts mortality in nondiabetic individuals in the US. Diabetes Care 33:1179–1185PubMedCrossRef
5.
go back to reference Pagotto U (2009) Where does insulin resistance start? The brain. Diabetes Care 32(Suppl 2):S174–S177PubMedCrossRef Pagotto U (2009) Where does insulin resistance start? The brain. Diabetes Care 32(Suppl 2):S174–S177PubMedCrossRef
6.
go back to reference Obici S, Zhang BB, Karkanias G, Rossetti L (2002) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8:1376–1382PubMedCrossRef Obici S, Zhang BB, Karkanias G, Rossetti L (2002) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8:1376–1382PubMedCrossRef
7.
go back to reference Koch L, Wunderlich FT, Seibler J et al (2008) Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest 118:2132–2147PubMed Koch L, Wunderlich FT, Seibler J et al (2008) Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest 118:2132–2147PubMed
8.
go back to reference Perrin C, Knauf C, Burcelin R (2004) Intracerebroventricular infusion of glucose, insulin, and the adenosine monophosphate-activated kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside, controls muscle glycogen synthesis. Endocrinology 145:4025–4033PubMedCrossRef Perrin C, Knauf C, Burcelin R (2004) Intracerebroventricular infusion of glucose, insulin, and the adenosine monophosphate-activated kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside, controls muscle glycogen synthesis. Endocrinology 145:4025–4033PubMedCrossRef
9.
go back to reference Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5:514–516PubMedCrossRef Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5:514–516PubMedCrossRef
10.
go back to reference Ketterer C, Tschritter O, Preissl H, Heni M, Haring HU, Fritsche A (2011) Insulin sensitivity of the human brain. Diabetes Res Clin Pract 93(Suppl 1):S47–S51PubMedCrossRef Ketterer C, Tschritter O, Preissl H, Heni M, Haring HU, Fritsche A (2011) Insulin sensitivity of the human brain. Diabetes Res Clin Pract 93(Suppl 1):S47–S51PubMedCrossRef
11.
go back to reference Hallschmid M, Schultes B (2009) Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders? Diabetologia 52:2264–2269PubMedCrossRef Hallschmid M, Schultes B (2009) Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders? Diabetologia 52:2264–2269PubMedCrossRef
12.
go back to reference Stingl KT, Kullmann S, Guthoff M, Heni M, Fritsche A, Preissl H (2010) Insulin modulation of magnetoencephalographic resting state dynamics in lean and obese subjects. Front Syst Neurosci 4:157PubMedCrossRef Stingl KT, Kullmann S, Guthoff M, Heni M, Fritsche A, Preissl H (2010) Insulin modulation of magnetoencephalographic resting state dynamics in lean and obese subjects. Front Syst Neurosci 4:157PubMedCrossRef
13.
go back to reference Guthoff M, Grichisch Y, Canova C et al (2010) Insulin modulates food-related activity in the central nervous system. J Clin Endocrinol Metab 95:748–755PubMedCrossRef Guthoff M, Grichisch Y, Canova C et al (2010) Insulin modulates food-related activity in the central nervous system. J Clin Endocrinol Metab 95:748–755PubMedCrossRef
14.
go back to reference Guthoff M, Stingl KT, Tschritter O et al (2011) The insulin-mediated modulation of visually evoked magnetic fields is reduced in obese subjects. PLoS One 6:e19482PubMedCrossRef Guthoff M, Stingl KT, Tschritter O et al (2011) The insulin-mediated modulation of visually evoked magnetic fields is reduced in obese subjects. PLoS One 6:e19482PubMedCrossRef
15.
go back to reference Benedict C, Hallschmid M, Hatke A et al (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29:1326–1334PubMedCrossRef Benedict C, Hallschmid M, Hatke A et al (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29:1326–1334PubMedCrossRef
16.
go back to reference Reger MA, Watson GS, Green PS et al (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70:440–448PubMedCrossRef Reger MA, Watson GS, Green PS et al (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70:440–448PubMedCrossRef
17.
go back to reference Baker LD, Frank LL, Foster-Schubert K et al (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol 67:71–79PubMedCrossRef Baker LD, Frank LL, Foster-Schubert K et al (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol 67:71–79PubMedCrossRef
18.
go back to reference Herzberg-Schafer SA, Staiger H, Heni M et al (2010) Evaluation of fasting state-/oral glucose tolerance test-derived measures of insulin release for the detection of genetically impaired beta-cell function. PLoS One 5:e14194PubMedCrossRef Herzberg-Schafer SA, Staiger H, Heni M et al (2010) Evaluation of fasting state-/oral glucose tolerance test-derived measures of insulin release for the detection of genetically impaired beta-cell function. PLoS One 5:e14194PubMedCrossRef
19.
go back to reference Zang YF, He Y, Zhu CZ et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91PubMedCrossRef Zang YF, He Y, Zhu CZ et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91PubMedCrossRef
20.
go back to reference Zou QH, Zhu CZ, Yang Y et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172:137–141PubMedCrossRef Zou QH, Zhu CZ, Yang Y et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172:137–141PubMedCrossRef
21.
go back to reference Benedict C, Brede S, Schioth HB et al (2011) Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes 60:114–118PubMedCrossRef Benedict C, Brede S, Schioth HB et al (2011) Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes 60:114–118PubMedCrossRef
22.
go back to reference Natali A, Gastaldelli A, Camastra S et al (2000) Dose–response characteristics of insulin action on glucose metabolism: a non-steady-state approach. Am J Physiol Endocrinol Metab 278:E794–E801PubMed Natali A, Gastaldelli A, Camastra S et al (2000) Dose–response characteristics of insulin action on glucose metabolism: a non-steady-state approach. Am J Physiol Endocrinol Metab 278:E794–E801PubMed
23.
go back to reference Rizza RA, Mandarino LJ, Gerich JE (1981) Dose–response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol 240:E630–E639PubMed Rizza RA, Mandarino LJ, Gerich JE (1981) Dose–response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol 240:E630–E639PubMed
24.
go back to reference Gerich JE, Mokan M, Veneman T, Korytkowski M, Mitrakou A (1991) Hypoglycemia unawareness. Endocr Rev 12:356–371PubMedCrossRef Gerich JE, Mokan M, Veneman T, Korytkowski M, Mitrakou A (1991) Hypoglycemia unawareness. Endocr Rev 12:356–371PubMedCrossRef
25.
go back to reference Flores-Riveros JR, McLenithan JC, Ezaki O, Lane MD (1993) Insulin down-regulates expression of the insulin-responsive glucose transporter (GLUT4) gene: effects on transcription and mRNA turnover. Proc Natl Acad Sci U S A 90:512–516PubMedCrossRef Flores-Riveros JR, McLenithan JC, Ezaki O, Lane MD (1993) Insulin down-regulates expression of the insulin-responsive glucose transporter (GLUT4) gene: effects on transcription and mRNA turnover. Proc Natl Acad Sci U S A 90:512–516PubMedCrossRef
26.
go back to reference Rother E, Konner AC, Bruning JC (2008) Neurocircuits integrating hormone and nutrient signaling in control of glucose metabolism. Am J Physiol Endocrinol Metab 294:E810–E816PubMedCrossRef Rother E, Konner AC, Bruning JC (2008) Neurocircuits integrating hormone and nutrient signaling in control of glucose metabolism. Am J Physiol Endocrinol Metab 294:E810–E816PubMedCrossRef
27.
go back to reference Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L (2002) Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5:566–572PubMedCrossRef Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L (2002) Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5:566–572PubMedCrossRef
28.
go back to reference Marks JL, King MG, Baskin DG (1991) Localization of insulin and type 1 IGF receptors in rat brain by in vitro autoradiography and in situ hybridization. Adv Exp Med Biol 293:459–470PubMedCrossRef Marks JL, King MG, Baskin DG (1991) Localization of insulin and type 1 IGF receptors in rat brain by in vitro autoradiography and in situ hybridization. Adv Exp Med Biol 293:459–470PubMedCrossRef
29.
go back to reference Unger JW, Livingston JN, Moss AM (1991) Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol 36:343–362PubMedCrossRef Unger JW, Livingston JN, Moss AM (1991) Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol 36:343–362PubMedCrossRef
30.
go back to reference Tschritter O, Preissl H, Hennige AM et al (2006) The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: a magnetoencephalographic study. Proc Natl Acad Sci U S A 103:12103–12108PubMedCrossRef Tschritter O, Preissl H, Hennige AM et al (2006) The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: a magnetoencephalographic study. Proc Natl Acad Sci U S A 103:12103–12108PubMedCrossRef
31.
go back to reference Porubska K, Veit R, Preissl H, Fritsche A, Birbaumer N (2006) Subjective feeling of appetite modulates brain activity: an fMRI study. Neuroimage 32:1273–1280PubMedCrossRef Porubska K, Veit R, Preissl H, Fritsche A, Birbaumer N (2006) Subjective feeling of appetite modulates brain activity: an fMRI study. Neuroimage 32:1273–1280PubMedCrossRef
32.
go back to reference Szczypka MS, Kwok K, Brot MD et al (2001) Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 30:819–828PubMedCrossRef Szczypka MS, Kwok K, Brot MD et al (2001) Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 30:819–828PubMedCrossRef
33.
go back to reference Barsh GS, Schwartz MW (2002) Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet 3:589–600PubMedCrossRef Barsh GS, Schwartz MW (2002) Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet 3:589–600PubMedCrossRef
34.
go back to reference Holt RI, Barnett AH, Bailey CJ (2010) Bromocriptine: old drug, new formulation and new indication. Diabetes Obes Metab 12:1048–1057PubMedCrossRef Holt RI, Barnett AH, Bailey CJ (2010) Bromocriptine: old drug, new formulation and new indication. Diabetes Obes Metab 12:1048–1057PubMedCrossRef
35.
go back to reference DeFronzo RA (2011) Bromocriptine: a sympatholytic, d2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care 34:789–794PubMedCrossRef DeFronzo RA (2011) Bromocriptine: a sympatholytic, d2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care 34:789–794PubMedCrossRef
36.
go back to reference Kullmann S, Heni M, Veit R et al (2011) The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum Brain Mapp. doi:10.1002/hbm.21268 Kullmann S, Heni M, Veit R et al (2011) The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum Brain Mapp. doi:10.​1002/​hbm.​21268
37.
go back to reference Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667PubMedCrossRef Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667PubMedCrossRef
38.
go back to reference Craig AD (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70PubMedCrossRef Craig AD (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70PubMedCrossRef
39.
go back to reference Takei H, Fujita S, Shirakawa T, Koshikawa N, Kobayashi M (2010) Insulin facilitates repetitive spike firing in rat insular cortex via phosphoinositide 3-kinase but not mitogen activated protein kinase cascade. Neuroscience 170:1199–1208PubMedCrossRef Takei H, Fujita S, Shirakawa T, Koshikawa N, Kobayashi M (2010) Insulin facilitates repetitive spike firing in rat insular cortex via phosphoinositide 3-kinase but not mitogen activated protein kinase cascade. Neuroscience 170:1199–1208PubMedCrossRef
40.
go back to reference Tataranni PA, Gautier JF, Chen K et al (1999) Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci U S A 96:4569–4574PubMedCrossRef Tataranni PA, Gautier JF, Chen K et al (1999) Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci U S A 96:4569–4574PubMedCrossRef
41.
go back to reference Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22:229–244PubMedCrossRef Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22:229–244PubMedCrossRef
42.
go back to reference Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6:691–702PubMedCrossRef Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6:691–702PubMedCrossRef
43.
go back to reference Del Parigi A, Gautier JF, Chen K et al (2002) Neuroimaging and obesity: mapping the brain responses to hunger and satiation in humans using positron emission tomography. Ann N Y Acad Sci 967:389–397PubMedCrossRef Del Parigi A, Gautier JF, Chen K et al (2002) Neuroimaging and obesity: mapping the brain responses to hunger and satiation in humans using positron emission tomography. Ann N Y Acad Sci 967:389–397PubMedCrossRef
44.
go back to reference Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72:341–372PubMedCrossRef Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72:341–372PubMedCrossRef
45.
go back to reference Bohringer A, Schwabe L, Richter S, Schachinger H (2008) Intranasal insulin attenuates the hypothalamic-pituitary-adrenal axis response to psychosocial stress. Psychoneuroendocrinology 33:1394–1400PubMedCrossRef Bohringer A, Schwabe L, Richter S, Schachinger H (2008) Intranasal insulin attenuates the hypothalamic-pituitary-adrenal axis response to psychosocial stress. Psychoneuroendocrinology 33:1394–1400PubMedCrossRef
46.
go back to reference Pocai A, Lam TK, Gutierrez-Juarez R et al (2005) Hypothalamic K(ATP) channels control hepatic glucose production. Nature 434:1026–1031PubMedCrossRef Pocai A, Lam TK, Gutierrez-Juarez R et al (2005) Hypothalamic K(ATP) channels control hepatic glucose production. Nature 434:1026–1031PubMedCrossRef
47.
go back to reference Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA (2011) Unconditioned and conditioned effects of intranasally administered insulin vs placebo in healthy men: a randomised controlled trial. Diabetologia 54:1502–1506PubMedCrossRef Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA (2011) Unconditioned and conditioned effects of intranasally administered insulin vs placebo in healthy men: a randomised controlled trial. Diabetologia 54:1502–1506PubMedCrossRef
48.
go back to reference Benedict C, Dodt C, Hallschmid M et al (2005) Immediate but not long-term intranasal administration of insulin raises blood pressure in human beings. Metabolism 54:1356–1361PubMedCrossRef Benedict C, Dodt C, Hallschmid M et al (2005) Immediate but not long-term intranasal administration of insulin raises blood pressure in human beings. Metabolism 54:1356–1361PubMedCrossRef
49.
go back to reference Leibowitz SF, Wortley KE (2004) Hypothalamic control of energy balance: different peptides, different functions. Peptides 25:473–504PubMedCrossRef Leibowitz SF, Wortley KE (2004) Hypothalamic control of energy balance: different peptides, different functions. Peptides 25:473–504PubMedCrossRef
50.
go back to reference Barbas H, Saha S, Rempel-Clower N, Ghashghaei T (2003) Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci 4:25PubMedCrossRef Barbas H, Saha S, Rempel-Clower N, Ghashghaei T (2003) Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci 4:25PubMedCrossRef
Metadata
Title
Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions
Authors
M. Heni
S. Kullmann
C. Ketterer
M. Guthoff
K. Linder
R. Wagner
K. T. Stingl
R. Veit
H. Staiger
H.-U. Häring
H. Preissl
A. Fritsche
Publication date
01-06-2012
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 6/2012
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-012-2528-y

Other articles of this Issue 6/2012

Diabetologia 6/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine