Skip to main content
Top
Published in: Diabetologia 3/2012

01-03-2012 | Article

Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology

Authors: A. K. Berner, O. Brouwers, R. Pringle, I. Klaassen, L. Colhoun, C. McVicar, S. Brockbank, J. W. Curry, T. Miyata, M. Brownlee, R. O. Schlingemann, C. Schalkwijk, A. W. Stitt

Published in: Diabetologia | Issue 3/2012

Login to get access

Abstract

Aims/hypothesis

Methylglyoxal (MG) is an important precursor for AGEs. Normally, MG is detoxified by the glyoxalase (GLO) enzyme system (including component enzymes GLO1 and GLO2). Enhanced glycolytic metabolism in many cells during diabetes may overpower detoxification capacity and lead to AGE-related pathology. Using a transgenic rat model that overexpresses GLO1, we investigated if this enzyme can inhibit retinal AGE formation and prevent key lesions of diabetic retinopathy.

Methods

Transgenic rats were developed by overexpression of full length GLO1. Diabetes was induced in wild-type (WT) and GLO1 rats and the animals were killed after 12 or 24 weeks of hyperglycaemia. N ε-(Carboxyethyl)lysine (CEL), N ε-(carboxymethyl)lysine (CML) and MG-derived-hydroimidazalone-1 (MG-H1) were determined by immunohistochemistry and by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MSMS). Müller glia dysfunction was determined by glial fibrillary acidic protein (GFAP) immunoreactivity and by spatial localisation of the potassium channel Kir4.1. Acellular capillaries were quantified in retinal flat mounts.

Results

GLO1 overexpression prevented CEL and MG-H1 accumulation in the diabetic retina when compared with WT diabetic counterparts (p < 0.01). Diabetes-related increases in Müller glial GFAP levels and loss of Kir4.1 at the vascular end-feet were significantly prevented by GLO1 overexpression (p < 0.05) at both 12- and 24-week time points. GLO1 diabetic animals showed fewer acellular capillaries than WT diabetic animals (p < 0.001) at 24 weeks’ diabetes.

Conclusions/interpretation

Detoxification of MG reduces AGE adduct accumulation, which, in turn, can prevent formation of key retinal neuroglial and vascular lesions as diabetes progresses. MG-derived AGEs play an important role in diabetic retinopathy.
Appendix
Available only for authorised users
Literature
2.
go back to reference Beisswenger PJ, Szwergold BS, Yeo KT (2001) Glycated proteins in diabetes. Clin Lab Med 21:53–78, viPubMed Beisswenger PJ, Szwergold BS, Yeo KT (2001) Glycated proteins in diabetes. Clin Lab Med 21:53–78, viPubMed
3.
go back to reference Fosmark DS, Torjesen PA, Kilhovd BK et al (2006) Increased serum levels of the specific advanced glycation end product methylglyoxal-derived hydroimidazolone are associated with retinopathy in patients with type 2 diabetes mellitus. Metabolism 55:232–236PubMedCrossRef Fosmark DS, Torjesen PA, Kilhovd BK et al (2006) Increased serum levels of the specific advanced glycation end product methylglyoxal-derived hydroimidazolone are associated with retinopathy in patients with type 2 diabetes mellitus. Metabolism 55:232–236PubMedCrossRef
4.
go back to reference Yamaguchi M, Nakamura N, Nakano K et al (1998) Immunochemical quantification of crossline as a fluorescent advanced glycation endproduct in erythrocyte membrane proteins from diabetic patients with or without retinopathy. Diabet Med 15:458–462PubMedCrossRef Yamaguchi M, Nakamura N, Nakano K et al (1998) Immunochemical quantification of crossline as a fluorescent advanced glycation endproduct in erythrocyte membrane proteins from diabetic patients with or without retinopathy. Diabet Med 15:458–462PubMedCrossRef
5.
go back to reference Genuth S, Sun W, Cleary P et al (2005) Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes 54:3103–3111PubMedCrossRef Genuth S, Sun W, Cleary P et al (2005) Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes 54:3103–3111PubMedCrossRef
6.
go back to reference Curtis TM, Hamilton R, Yong PH et al (2011) Muller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products. Diabetologia 54:690–698PubMedCrossRef Curtis TM, Hamilton R, Yong PH et al (2011) Muller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products. Diabetologia 54:690–698PubMedCrossRef
7.
go back to reference Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H (1997) Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol 150:523–531PubMed Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H (1997) Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol 150:523–531PubMed
8.
go back to reference Gardiner TA, Anderson HR, Stitt AW (2003) Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J Pathol 201:328–333PubMedCrossRef Gardiner TA, Anderson HR, Stitt AW (2003) Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J Pathol 201:328–333PubMedCrossRef
9.
go back to reference Bhatwadekar A, Glenn JV, Figarola JL et al (2008) A new advanced glycation inhibitor, LR-90, prevents experimental diabetic retinopathy in rats. Br J Ophthalmol 92:545–547PubMedCrossRef Bhatwadekar A, Glenn JV, Figarola JL et al (2008) A new advanced glycation inhibitor, LR-90, prevents experimental diabetic retinopathy in rats. Br J Ophthalmol 92:545–547PubMedCrossRef
10.
go back to reference Hammes HP, Alt A, Niwa T et al (1999) Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia 42:728–736PubMedCrossRef Hammes HP, Alt A, Niwa T et al (1999) Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia 42:728–736PubMedCrossRef
11.
go back to reference Hammes HP, Du X, Edelstein D et al (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299PubMedCrossRef Hammes HP, Du X, Edelstein D et al (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299PubMedCrossRef
13.
go back to reference Kilhovd BK, Giardino I, Torjesen PA et al (2003) Increased serum levels of the specific AGE-compound methylglyoxal-derived hydroimidazolone in patients with type 2 diabetes. Metabolism 52:163–167PubMedCrossRef Kilhovd BK, Giardino I, Torjesen PA et al (2003) Increased serum levels of the specific AGE-compound methylglyoxal-derived hydroimidazolone in patients with type 2 diabetes. Metabolism 52:163–167PubMedCrossRef
14.
go back to reference Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344(Pt 1):109–116PubMedCrossRef Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344(Pt 1):109–116PubMedCrossRef
15.
go back to reference Glomb MA, Lang G (2001) Isolation and characterization of glyoxal-arginine modifications. J Agric Food Chem 49:1493–1501PubMedCrossRef Glomb MA, Lang G (2001) Isolation and characterization of glyoxal-arginine modifications. J Agric Food Chem 49:1493–1501PubMedCrossRef
16.
go back to reference Kuhla B, Luth HJ, Haferburg D, Boeck K, Arendt T, Munch G (2005) Methylglyoxal, glyoxal, and their detoxification in Alzheimer's disease. Ann N Y Acad Sci 1043:211–216PubMedCrossRef Kuhla B, Luth HJ, Haferburg D, Boeck K, Arendt T, Munch G (2005) Methylglyoxal, glyoxal, and their detoxification in Alzheimer's disease. Ann N Y Acad Sci 1043:211–216PubMedCrossRef
17.
go back to reference Shinohara M, Thornalley PJ, Giardino I et al (1998) Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest 101:1142–1147PubMedCrossRef Shinohara M, Thornalley PJ, Giardino I et al (1998) Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest 101:1142–1147PubMedCrossRef
18.
go back to reference Yao D, Taguchi T, Matsumura T et al (2007) High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 282:31038–31045PubMedCrossRef Yao D, Taguchi T, Matsumura T et al (2007) High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 282:31038–31045PubMedCrossRef
19.
go back to reference Brouwers O, Niessen PM, Ferreira I et al (2011) Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J Biol Chem 286:1374–1380PubMedCrossRef Brouwers O, Niessen PM, Ferreira I et al (2011) Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J Biol Chem 286:1374–1380PubMedCrossRef
20.
go back to reference Brouwers O, Niessen PM, Haenen G et al (2010) Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress. Diabetologia 53:989–1000PubMedCrossRef Brouwers O, Niessen PM, Haenen G et al (2010) Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress. Diabetologia 53:989–1000PubMedCrossRef
21.
go back to reference Bento CF, Fernandes R, Ramalho J et al (2010) The chaperone-dependent ubiquitin ligase CHIP targets HIF-1alpha for degradation in the presence of methylglyoxal. PLoS One 5:e15062PubMedCrossRef Bento CF, Fernandes R, Ramalho J et al (2010) The chaperone-dependent ubiquitin ligase CHIP targets HIF-1alpha for degradation in the presence of methylglyoxal. PLoS One 5:e15062PubMedCrossRef
22.
go back to reference Queisser MA, Yao D, Geisler S et al (2010) Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes 59:670–678PubMedCrossRef Queisser MA, Yao D, Geisler S et al (2010) Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes 59:670–678PubMedCrossRef
23.
go back to reference Karachalias N, Babaei-Jadidi R, Ahmed N, Thornalley PJ (2003) Accumulation of fructosyl-lysine and advanced glycation end products in the kidney, retina and peripheral nerve of streptozotocin-induced diabetic rats. Biochem Soc Trans 31:1423–1425PubMedCrossRef Karachalias N, Babaei-Jadidi R, Ahmed N, Thornalley PJ (2003) Accumulation of fructosyl-lysine and advanced glycation end products in the kidney, retina and peripheral nerve of streptozotocin-induced diabetic rats. Biochem Soc Trans 31:1423–1425PubMedCrossRef
24.
go back to reference Denis U, Lecomte M, Paget C, Ruggiero D, Wiernsperger N, Lagarde M (2002) Advanced glycation end-products induce apoptosis of bovine retinal pericytes in culture: involvement of diacylglycerol/ceramide production and oxidative stress induction. Free Radic Biol Med 33:236–247PubMedCrossRef Denis U, Lecomte M, Paget C, Ruggiero D, Wiernsperger N, Lagarde M (2002) Advanced glycation end-products induce apoptosis of bovine retinal pericytes in culture: involvement of diacylglycerol/ceramide production and oxidative stress induction. Free Radic Biol Med 33:236–247PubMedCrossRef
25.
go back to reference Miller AG, Smith DG, Bhat M, Nagaraj RH (2006) Glyoxalase I is critical for human retinal capillary pericyte survival under hyperglycemic conditions. J Biol Chem 281:11864–11871PubMedCrossRef Miller AG, Smith DG, Bhat M, Nagaraj RH (2006) Glyoxalase I is critical for human retinal capillary pericyte survival under hyperglycemic conditions. J Biol Chem 281:11864–11871PubMedCrossRef
26.
go back to reference Klaassen I, Hughes JM, Vogels IM, Schalkwijk CG, van Noorden CJ, Schlingemann RO (2009) Altered expression of genes related to blood–retina barrier disruption in streptozotocin-induced diabetes. Exp Eye Res 89:4–15PubMedCrossRef Klaassen I, Hughes JM, Vogels IM, Schalkwijk CG, van Noorden CJ, Schlingemann RO (2009) Altered expression of genes related to blood–retina barrier disruption in streptozotocin-induced diabetes. Exp Eye Res 89:4–15PubMedCrossRef
27.
go back to reference McVicar CM, Colhoun LM, Abrahams JL et al (2010) Differential modulation of angiogenesis by erythropoiesis-stimulating agents in a mouse model of ischaemic retinopathy. PLoS One 5:e11870PubMedCrossRef McVicar CM, Colhoun LM, Abrahams JL et al (2010) Differential modulation of angiogenesis by erythropoiesis-stimulating agents in a mouse model of ischaemic retinopathy. PLoS One 5:e11870PubMedCrossRef
28.
go back to reference Canning P, Glenn JV, Hsu DK, Liu FT, Gardiner TA, Stitt AW (2007) Inhibition of advanced glycation and absence of galectin-3 prevent blood–retinal barrier dysfunction during short-term diabetes. Exp Diabetes Res 51837:1–10CrossRef Canning P, Glenn JV, Hsu DK, Liu FT, Gardiner TA, Stitt AW (2007) Inhibition of advanced glycation and absence of galectin-3 prevent blood–retinal barrier dysfunction during short-term diabetes. Exp Diabetes Res 51837:1–10CrossRef
29.
go back to reference Stitt A, Gardiner TA, Alderson NL et al (2002) The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51:2826–2832PubMedCrossRef Stitt A, Gardiner TA, Alderson NL et al (2002) The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51:2826–2832PubMedCrossRef
30.
go back to reference Zong H, Ward M, Madden A et al (2010) Hyperglycaemia-induced pro-inflammatory responses by retinal Muller glia are regulated by the receptor for advanced glycation end-products (RAGE). Diabetologia 53:2656–2666PubMedCrossRef Zong H, Ward M, Madden A et al (2010) Hyperglycaemia-induced pro-inflammatory responses by retinal Muller glia are regulated by the receptor for advanced glycation end-products (RAGE). Diabetologia 53:2656–2666PubMedCrossRef
31.
go back to reference Pannicke T, Iandiev I, Wurm A et al (2006) Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes 55:633–639PubMedCrossRef Pannicke T, Iandiev I, Wurm A et al (2006) Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes 55:633–639PubMedCrossRef
32.
go back to reference Morcos M, Du X, Pfisterer F et al (2008) Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell 7:260–269PubMedCrossRef Morcos M, Du X, Pfisterer F et al (2008) Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell 7:260–269PubMedCrossRef
33.
go back to reference Hughes JM, Kuiper EJ, Klaassen I et al (2007) Advanced glycation end products cause increased CCN family and extracellular matrix gene expression in the diabetic rodent retina. Diabetologia 50:1089–1098PubMedCrossRef Hughes JM, Kuiper EJ, Klaassen I et al (2007) Advanced glycation end products cause increased CCN family and extracellular matrix gene expression in the diabetic rodent retina. Diabetologia 50:1089–1098PubMedCrossRef
34.
go back to reference Nagai R, Hayashi CM, Xia L, Takeya M, Horiuchi S (2002) Identification in human atherosclerotic lesions of GA-pyridine, a novel structure derived from glycolaldehyde-modified proteins. J Biol Chem 277:48905–48912PubMedCrossRef Nagai R, Hayashi CM, Xia L, Takeya M, Horiuchi S (2002) Identification in human atherosclerotic lesions of GA-pyridine, a novel structure derived from glycolaldehyde-modified proteins. J Biol Chem 277:48905–48912PubMedCrossRef
35.
go back to reference Obrosova IG, Fathallah L, Greene DA (2000) Early changes in lipid peroxidation and antioxidative defense in diabetic rat retina: effect of DL-alpha-lipoic acid. Eur J Pharmacol 398:139–146PubMedCrossRef Obrosova IG, Fathallah L, Greene DA (2000) Early changes in lipid peroxidation and antioxidative defense in diabetic rat retina: effect of DL-alpha-lipoic acid. Eur J Pharmacol 398:139–146PubMedCrossRef
36.
go back to reference Aguilera J, Prieto JA (2001) The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Curr Genet 39:273–283PubMedCrossRef Aguilera J, Prieto JA (2001) The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Curr Genet 39:273–283PubMedCrossRef
37.
go back to reference Vander Jagt DL, Hassebrook RK, Hunsaker LA, Brown WM, Royer RE (2001) Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications. Chem Biol Interact 130–132:549–562PubMedCrossRef Vander Jagt DL, Hassebrook RK, Hunsaker LA, Brown WM, Royer RE (2001) Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications. Chem Biol Interact 130–132:549–562PubMedCrossRef
38.
go back to reference Padival S, Nagaraj RH (2006) Pyridoxamine inhibits maillard reactions in diabetic rat lenses. Ophthalmic Res 38:294–302PubMedCrossRef Padival S, Nagaraj RH (2006) Pyridoxamine inhibits maillard reactions in diabetic rat lenses. Ophthalmic Res 38:294–302PubMedCrossRef
39.
go back to reference Payet O, Maurin L, Bonne C, Muller A (2004) Hypoxia stimulates glutamate uptake in whole rat retinal cells in vitro. Neurosci Lett 356:148–150PubMedCrossRef Payet O, Maurin L, Bonne C, Muller A (2004) Hypoxia stimulates glutamate uptake in whole rat retinal cells in vitro. Neurosci Lett 356:148–150PubMedCrossRef
40.
go back to reference Hammes HP, Federoff HJ, Brownlee M (1995) Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1:527–534PubMed Hammes HP, Federoff HJ, Brownlee M (1995) Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1:527–534PubMed
41.
go back to reference Mizutani M, Gerhardinger C, Lorenzi M (1998) Muller cell changes in human diabetic retinopathy. Diabetes 47:445–449PubMedCrossRef Mizutani M, Gerhardinger C, Lorenzi M (1998) Muller cell changes in human diabetic retinopathy. Diabetes 47:445–449PubMedCrossRef
42.
go back to reference Fischer AJ, Scott MA, Ritchey ER, Sherwood P (2009) Mitogen-activated protein kinase-signaling regulates the ability of Muller glia to proliferate and protect retinal neurons against excitotoxicity. Glia 57:1538–1552PubMedCrossRef Fischer AJ, Scott MA, Ritchey ER, Sherwood P (2009) Mitogen-activated protein kinase-signaling regulates the ability of Muller glia to proliferate and protect retinal neurons against excitotoxicity. Glia 57:1538–1552PubMedCrossRef
43.
go back to reference Shelton MD, Kern TS, Mieyal JJ (2007) Glutaredoxin regulates nuclear factor kappa-B and intercellular adhesion molecule in Muller cells: model of diabetic retinopathy. J Biol Chem 282:12467–12474PubMedCrossRef Shelton MD, Kern TS, Mieyal JJ (2007) Glutaredoxin regulates nuclear factor kappa-B and intercellular adhesion molecule in Muller cells: model of diabetic retinopathy. J Biol Chem 282:12467–12474PubMedCrossRef
44.
go back to reference Winkler BS, Starnes CA, Sauer MW, Firouzgan Z, Chen SC (2004) Cultured retinal neuronal cells and Muller cells both show net production of lactate. Neurochem Int 45:311–320PubMedCrossRef Winkler BS, Starnes CA, Sauer MW, Firouzgan Z, Chen SC (2004) Cultured retinal neuronal cells and Muller cells both show net production of lactate. Neurochem Int 45:311–320PubMedCrossRef
45.
go back to reference Reichenbach A, Wurm A, Pannicke T, Iandiev I, Wiedemann P, Bringmann A (2007) Muller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol 245:627–636PubMedCrossRef Reichenbach A, Wurm A, Pannicke T, Iandiev I, Wiedemann P, Bringmann A (2007) Muller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol 245:627–636PubMedCrossRef
46.
go back to reference Connors NC, Adams ME, Froehner SC, Kofuji P (2004) The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia. J Biol Chem 279:28387–28392PubMedCrossRef Connors NC, Adams ME, Froehner SC, Kofuji P (2004) The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia. J Biol Chem 279:28387–28392PubMedCrossRef
47.
go back to reference Miller AG, Tan G, Binger KJ et al (2010) Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. Diabetes 59:3208–3215PubMedCrossRef Miller AG, Tan G, Binger KJ et al (2010) Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. Diabetes 59:3208–3215PubMedCrossRef
Metadata
Title
Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology
Authors
A. K. Berner
O. Brouwers
R. Pringle
I. Klaassen
L. Colhoun
C. McVicar
S. Brockbank
J. W. Curry
T. Miyata
M. Brownlee
R. O. Schlingemann
C. Schalkwijk
A. W. Stitt
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 3/2012
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-011-2393-0

Other articles of this Issue 3/2012

Diabetologia 3/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine