Skip to main content
Top
Published in: Diabetologia 5/2011

Open Access 01-05-2011 | Article

The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes

Authors: M. Shimoda, Y. Kanda, S. Hamamoto, K. Tawaramoto, M. Hashiramoto, M. Matsuki, K. Kaku

Published in: Diabetologia | Issue 5/2011

Login to get access

Abstract

Aims/hypothesis

We investigated the molecular mechanism by which the human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells in diabetic db/db mice.

Methods

Male db/db and m/m mice aged 10 weeks received liraglutide or vehicle for 2 days or 2 weeks. In addition to morphological and biochemical analysis of pancreatic islets, gene expression profiles in the islet core area were investigated by laser capture microdissection and real-time RT-PCR.

Results

Liraglutide treatment for 2 weeks improved metabolic variables and insulin sensitivity in db/db mice. Liraglutide also increased glucose-stimulated insulin secretion (GSIS) and islet insulin content in both mouse strains and reduced triacylglycerol content in db/db mice. Expression of genes involved in cell differentiation and proliferation in both mouse strains was regulated by liraglutide, which, in db/db mice, downregulated genes involved in pro-apoptosis, endoplasmic reticulum (ER) stress and lipid synthesis, and upregulated genes related to anti-apoptosis and anti-oxidative stress. In the 2 day experiment, liraglutide slightly improved metabolic variables in db/db mice, but GSIS, insulin and triacylglycerol content were not affected. In db/db mice, liraglutide increased gene expression associated with cell differentiation, proliferation and anti-apoptosis, and suppressed gene expression involved in pro-apoptosis; it had no effect on genes related to oxidative stress or ER stress. Morphometric results for cell proliferation, cell apoptosis and oxidative stress in db/db mice islets were consistent with the results of the gene expression analysis.

Conclusions/interpretation

Liraglutide increases beta cell mass not only by directly regulating cell kinetics, but also by suppressing oxidative and ER stress, secondary to amelioration of glucolipotoxicity.
Literature
1.
go back to reference UK Prospective Diabetes Study (UKPDS) Group (1995) Overview of 6 years’ therapy of type II diabetes (UKPDS 16). Diabetes 44:1249–1258CrossRef UK Prospective Diabetes Study (UKPDS) Group (1995) Overview of 6 years’ therapy of type II diabetes (UKPDS 16). Diabetes 44:1249–1258CrossRef
2.
go back to reference Bagdade JD, Bierman EL, Porte D Jr (1967) The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. J Clin Invest 46:1549–1557PubMedCrossRef Bagdade JD, Bierman EL, Porte D Jr (1967) The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. J Clin Invest 46:1549–1557PubMedCrossRef
3.
go back to reference Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedCrossRef Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedCrossRef
4.
go back to reference Buchanan TA, Xiang AH, Peters RK et al (2002) Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 51:2796–2803PubMedCrossRef Buchanan TA, Xiang AH, Peters RK et al (2002) Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 51:2796–2803PubMedCrossRef
5.
go back to reference Ovalle F, Bell DS (2004) Effect of rosiglitazone vs insulin on the pancreatic beta-cell function of subjects with type 2 diabetes. Diab Care 27:2585–2589CrossRef Ovalle F, Bell DS (2004) Effect of rosiglitazone vs insulin on the pancreatic beta-cell function of subjects with type 2 diabetes. Diab Care 27:2585–2589CrossRef
6.
go back to reference Pospisilik JA, Martin J, Doty T et al (2003) Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 52:741–750PubMedCrossRef Pospisilik JA, Martin J, Doty T et al (2003) Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 52:741–750PubMedCrossRef
7.
go back to reference Rolin B, Larsen MO, Gotfredsen CF et al (2002) The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am J Physiol Endocrinol Metab 283:E745–E752PubMed Rolin B, Larsen MO, Gotfredsen CF et al (2002) The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am J Physiol Endocrinol Metab 283:E745–E752PubMed
8.
go back to reference Tourrel C, Bailbe D, Lacorne M, Meile MJ, Kergoat M, Portha B (2002) Persistent improvement of type 2 diabetes in the Goto–Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes 51:1443–1452PubMedCrossRef Tourrel C, Bailbe D, Lacorne M, Meile MJ, Kergoat M, Portha B (2002) Persistent improvement of type 2 diabetes in the Goto–Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes 51:1443–1452PubMedCrossRef
9.
go back to reference Fehmann HC, Habener JF (1992) Insulinotropic hormone glucagon-like peptide-I (7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology 130:159–166PubMedCrossRef Fehmann HC, Habener JF (1992) Insulinotropic hormone glucagon-like peptide-I (7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology 130:159–166PubMedCrossRef
10.
go back to reference Wang Y, Perfetti R, Greig NH et al (1997) Glucagon-like peptide-1 can reverse the age-related decline in glucose tolerance in rats. J Clin Invest 99:2883–2889PubMedCrossRef Wang Y, Perfetti R, Greig NH et al (1997) Glucagon-like peptide-1 can reverse the age-related decline in glucose tolerance in rats. J Clin Invest 99:2883–2889PubMedCrossRef
11.
go back to reference D’Alessio DA, Kahn SE, Leusner CR, Ensinck JW (1994) Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J Clin Invest 93:2263–2266PubMedCrossRef D’Alessio DA, Kahn SE, Leusner CR, Ensinck JW (1994) Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J Clin Invest 93:2263–2266PubMedCrossRef
12.
go back to reference Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619PubMedCrossRef Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619PubMedCrossRef
13.
go back to reference Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 2:1300–1304PubMedCrossRef Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 2:1300–1304PubMedCrossRef
14.
go back to reference Orskov C, Holst JJ, Nielsen OV (1988) Effect of truncated glucagon-like peptide-1 [proglucagon-(78–107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 123:2009–2013PubMedCrossRef Orskov C, Holst JJ, Nielsen OV (1988) Effect of truncated glucagon-like peptide-1 [proglucagon-(78–107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 123:2009–2013PubMedCrossRef
15.
go back to reference Nauck MA, Wollschlager D, Werner J et al (1996) Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7–36 amide]) in patients with NIDDM. Diabetologia 39:1546–1553PubMedCrossRef Nauck MA, Wollschlager D, Werner J et al (1996) Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7–36 amide]) in patients with NIDDM. Diabetologia 39:1546–1553PubMedCrossRef
16.
go back to reference Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ (1993) Truncated GLP-1 (proglucagon 72–107 amide) inhibits gastric and pancreatic function in man. Dig Dis Sci 38:665–673PubMedCrossRef Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ (1993) Truncated GLP-1 (proglucagon 72–107 amide) inhibits gastric and pancreatic function in man. Dig Dis Sci 38:665–673PubMedCrossRef
17.
go back to reference Näslund E, Gutniak MK, Skogar S, Rössner S, Hellström PM (1998) GLP-1 increases the period of postprandial satiety and slows gastric emptying in obese humans. Am J Clin Nutr 68:525–530PubMed Näslund E, Gutniak MK, Skogar S, Rössner S, Hellström PM (1998) GLP-1 increases the period of postprandial satiety and slows gastric emptying in obese humans. Am J Clin Nutr 68:525–530PubMed
18.
go back to reference Näslund E, Barkeling B, King N et al (1999) Energy intake and appetite are suppressed by glucagon-like-peptide 1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 23:304–311PubMedCrossRef Näslund E, Barkeling B, King N et al (1999) Energy intake and appetite are suppressed by glucagon-like-peptide 1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 23:304–311PubMedCrossRef
19.
go back to reference Lee YS, Shin S, Shigihara T et al (2007) Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes 56:1671–1679PubMedCrossRef Lee YS, Shin S, Shigihara T et al (2007) Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes 56:1671–1679PubMedCrossRef
20.
go back to reference Xu G, Stoffers DA, Habener JF, Bonner-Weir S (1999) Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48:2270–2276PubMedCrossRef Xu G, Stoffers DA, Habener JF, Bonner-Weir S (1999) Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48:2270–2276PubMedCrossRef
21.
go back to reference Friedrichsen BN, Neubauer N, Lee YC et al (2006) Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J Endocrinol 188:481–492PubMedCrossRef Friedrichsen BN, Neubauer N, Lee YC et al (2006) Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J Endocrinol 188:481–492PubMedCrossRef
22.
go back to reference Paris M, Tourrel-Cuzin C, Plachot C, Ktorza A (2004) Review: pancreatic beta-cell neogenesis revisited. Exp Diabesity Res 5:111–121PubMedCrossRef Paris M, Tourrel-Cuzin C, Plachot C, Ktorza A (2004) Review: pancreatic beta-cell neogenesis revisited. Exp Diabesity Res 5:111–121PubMedCrossRef
23.
go back to reference Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ (2003) Glucagon-like peptide-1 receptor signaling modulates cell apoptosis. J Biol Chem 278:471–478PubMedCrossRef Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ (2003) Glucagon-like peptide-1 receptor signaling modulates cell apoptosis. J Biol Chem 278:471–478PubMedCrossRef
24.
go back to reference Bregenholt S, Møldrup A, Blume N et al (2005) The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits beta-cell apoptosis in vitro. Biochem Biophys Res Commun 330:577–584PubMedCrossRef Bregenholt S, Møldrup A, Blume N et al (2005) The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits beta-cell apoptosis in vitro. Biochem Biophys Res Commun 330:577–584PubMedCrossRef
25.
go back to reference Hui H, Nourparvar A, Zhao X, Perfetti R (2003) Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 144:1444–1455PubMedCrossRef Hui H, Nourparvar A, Zhao X, Perfetti R (2003) Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 144:1444–1455PubMedCrossRef
26.
go back to reference Tews D, Lehr S, Hartwig S, Osmers A, Paslack W, Eckel J (2009) Anti-apoptotic action of exendin-4 in INS-1 beta cells: comparative protein pattern analysis of isolated mitochondria. Horm Metab Res 41:294–301PubMedCrossRef Tews D, Lehr S, Hartwig S, Osmers A, Paslack W, Eckel J (2009) Anti-apoptotic action of exendin-4 in INS-1 beta cells: comparative protein pattern analysis of isolated mitochondria. Horm Metab Res 41:294–301PubMedCrossRef
27.
go back to reference Meier JJ, Nauck MA (2004) The potential role of glucagon-like peptide 1 in diabetes. Curr Opin Investig Drugs 5:402–410PubMed Meier JJ, Nauck MA (2004) The potential role of glucagon-like peptide 1 in diabetes. Curr Opin Investig Drugs 5:402–410PubMed
28.
go back to reference Bjerre Knudsen L (2004) Glucagon-like peptide I: the basis of a new class of treatment for type 2 diabetes. J Med Chem 47:4128–4134CrossRef Bjerre Knudsen L (2004) Glucagon-like peptide I: the basis of a new class of treatment for type 2 diabetes. J Med Chem 47:4128–4134CrossRef
29.
go back to reference Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705PubMedCrossRef Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705PubMedCrossRef
30.
go back to reference Kitamura T, Kido Y, Nef S, Merenmies J, Parada LF, Accili D (2001) Preserved pancreatic beta-cell development and function in mice lacking the insulin receptor-related receptor. Mol Cell Biol 21:5624–5630PubMedCrossRef Kitamura T, Kido Y, Nef S, Merenmies J, Parada LF, Accili D (2001) Preserved pancreatic beta-cell development and function in mice lacking the insulin receptor-related receptor. Mol Cell Biol 21:5624–5630PubMedCrossRef
31.
go back to reference Farilla L, Hui H, Bertolotto C et al (2002) Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 143:4397–4408PubMedCrossRef Farilla L, Hui H, Bertolotto C et al (2002) Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 143:4397–4408PubMedCrossRef
32.
go back to reference Kanda Y, Shimoda M, Hamamoto S et al (2010) Molecular mechanism by which pioglitazone preserves pancreatic β cells in obese diabetic mice: evidence for acute and chronic actions as a PPARγ agonist. Am J Physiol Endocrinol Metab 298:E278–E286PubMedCrossRef Kanda Y, Shimoda M, Hamamoto S et al (2010) Molecular mechanism by which pioglitazone preserves pancreatic β cells in obese diabetic mice: evidence for acute and chronic actions as a PPARγ agonist. Am J Physiol Endocrinol Metab 298:E278–E286PubMedCrossRef
33.
go back to reference Jensen JN, Cameron E, Garay MV et al (2005) Replication of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology 128:728–741PubMedCrossRef Jensen JN, Cameron E, Garay MV et al (2005) Replication of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology 128:728–741PubMedCrossRef
34.
go back to reference Miyamoto Y, Maitra A, Ghosh B et al (2003) Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3:565–576PubMedCrossRef Miyamoto Y, Maitra A, Ghosh B et al (2003) Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3:565–576PubMedCrossRef
35.
go back to reference Bar Y, Russ HA, Knoller S et al (2008) HES-1 is involved in adaptation of adult human beta-cells to proliferation in vitro. Diabetes 57:2413–2420PubMedCrossRef Bar Y, Russ HA, Knoller S et al (2008) HES-1 is involved in adaptation of adult human beta-cells to proliferation in vitro. Diabetes 57:2413–2420PubMedCrossRef
36.
go back to reference Bock T, Pakkenberg B, Buschard K (2003) The endocrine pancreas in non-diabetic rats after short-term and long-term treatment with the long-acting GLP-1 derivative NN2211. APMIS 111:1117–1124PubMedCrossRef Bock T, Pakkenberg B, Buschard K (2003) The endocrine pancreas in non-diabetic rats after short-term and long-term treatment with the long-acting GLP-1 derivative NN2211. APMIS 111:1117–1124PubMedCrossRef
37.
go back to reference Frödin M, Sekine N, Roche E et al (1995) Glucose, other secretagogues, and nerve growth-factor stimulate mitogen-activated protein-kinase in the insulin-secreting beta-cell line, INS-1. J Biol Chem 270:7882–7889PubMedCrossRef Frödin M, Sekine N, Roche E et al (1995) Glucose, other secretagogues, and nerve growth-factor stimulate mitogen-activated protein-kinase in the insulin-secreting beta-cell line, INS-1. J Biol Chem 270:7882–7889PubMedCrossRef
38.
go back to reference Buteau J, Roduit R, Susini S, Prentki M (1999) Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 42:856–864PubMedCrossRef Buteau J, Roduit R, Susini S, Prentki M (1999) Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 42:856–864PubMedCrossRef
39.
go back to reference Buteau J, Foisy S, Joly E, Prentki M (2003) Glucagon-like peptide 1 induces beta-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 52:124–132PubMedCrossRef Buteau J, Foisy S, Joly E, Prentki M (2003) Glucagon-like peptide 1 induces beta-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 52:124–132PubMedCrossRef
40.
go back to reference Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, Prentki M (2001) Protein kinase Cζ activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes 50:2237–2243PubMedCrossRef Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, Prentki M (2001) Protein kinase Cζ activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes 50:2237–2243PubMedCrossRef
41.
go back to reference Costes S, Broca C, Bertrand G et al (2006) ERK1/2 control phosphorylation and protein level of cAMP-responsive element-binding protein: a key role in glucose-mediated pancreatic beta-cell survival. Diabetes 55:2220–2230PubMedCrossRef Costes S, Broca C, Bertrand G et al (2006) ERK1/2 control phosphorylation and protein level of cAMP-responsive element-binding protein: a key role in glucose-mediated pancreatic beta-cell survival. Diabetes 55:2220–2230PubMedCrossRef
42.
go back to reference Hammar E, Parnaud G, Bosco D et al (2004) Extracellular matrix protects pancreatic beta-cells against apoptosis: role of short- and long-term signaling pathways. Diabetes 53:2034–2041PubMedCrossRef Hammar E, Parnaud G, Bosco D et al (2004) Extracellular matrix protects pancreatic beta-cells against apoptosis: role of short- and long-term signaling pathways. Diabetes 53:2034–2041PubMedCrossRef
43.
go back to reference Yusta B, Baggio LL, Estall JL et al (2006) GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab 4:391–406PubMedCrossRef Yusta B, Baggio LL, Estall JL et al (2006) GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab 4:391–406PubMedCrossRef
Metadata
Title
The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes
Authors
M. Shimoda
Y. Kanda
S. Hamamoto
K. Tawaramoto
M. Hashiramoto
M. Matsuki
K. Kaku
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 5/2011
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-011-2069-9

Other articles of this Issue 5/2011

Diabetologia 5/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine