Skip to main content
Top
Published in: Diabetologia 2/2007

01-02-2007 | Article

Brain-derived neurotrophic factor (BDNF) and type 2 diabetes

Authors: K. S. Krabbe, A. R. Nielsen, R. Krogh-Madsen, P. Plomgaard, P. Rasmussen, C. Erikstrup, C. P. Fischer, B. Lindegaard, A. M. W. Petersen, S. Taudorf, N. H. Secher, H. Pilegaard, H. Bruunsgaard, B. K. Pedersen

Published in: Diabetologia | Issue 2/2007

Login to get access

Abstract

Aims/hypothesis

Decreased levels of brain-derived neurotrophic factor (BDNF) have been implicated in the pathogenesis of Alzheimer’s disease and depression. These disorders are associated with type 2 diabetes, and animal models suggest that BDNF plays a role in insulin resistance. We therefore explored whether BDNF plays a role in human glucose metabolism.

Subjects and methods

We included (Study 1) 233 humans divided into four groups depending on presence or absence of type 2 diabetes and presence or absence of obesity; and (Study 2) seven healthy volunteers who underwent both a hyperglycaemic and a hyperinsulinaemic–euglycaemic clamp.

Results

Plasma levels of BDNF in Study 1 were decreased in humans with type 2 diabetes independently of obesity. Plasma BDNF was inversely associated with fasting plasma glucose, but not with insulin. No association was found between the BDNF G196A (Val66Met) polymorphism and diabetes or obesity. In Study 2 an output of BDNF from the human brain was detected at basal conditions. This output was inhibited when blood glucose levels were elevated. In contrast, when plasma insulin was increased while maintaining normal blood glucose, the cerebral output of BDNF was not inhibited, indicating that high levels of glucose, but not insulin, inhibit the output of BDNF from the human brain.

Conclusions/interpretation

Low levels of BDNF accompany impaired glucose metabolism. Decreased BDNF may be a pathogenetic factor involved not only in dementia and depression, but also in type 2 diabetes, potentially explaining the clustering of these conditions in epidemiological studies.
Literature
1.
go back to reference Mattson MP, Maudsley S, Martin B (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 27:589–594PubMedCrossRef Mattson MP, Maudsley S, Martin B (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 27:589–594PubMedCrossRef
2.
go back to reference Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD (2002) From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9:224–237PubMedCrossRef Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD (2002) From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9:224–237PubMedCrossRef
3.
go back to reference Tsai SJ (2003) Brain-derived neurotrophic factor: a bridge between major depression and Alzheimer’s disease? Med Hypotheses 61:110–113PubMedCrossRef Tsai SJ (2003) Brain-derived neurotrophic factor: a bridge between major depression and Alzheimer’s disease? Med Hypotheses 61:110–113PubMedCrossRef
4.
go back to reference Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M (1997) Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Brain Res Mol Brain Res 49:71–81PubMedCrossRef Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M (1997) Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Brain Res Mol Brain Res 49:71–81PubMedCrossRef
5.
go back to reference Laske C, Stransky E, Leyhe T et al (2006) Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J Neural Transm 113:1217–1224PubMedCrossRef Laske C, Stransky E, Leyhe T et al (2006) Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J Neural Transm 113:1217–1224PubMedCrossRef
6.
go back to reference Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109:143–148PubMedCrossRef Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109:143–148PubMedCrossRef
7.
go back to reference Ono M, Ichihara J, Nonomura T et al (1997) Brain-derived neurotrophic factor reduces blood glucose level in obese diabetic mice but not in normal mice. Biochem Biophys Res Commun 238:633–637PubMedCrossRef Ono M, Ichihara J, Nonomura T et al (1997) Brain-derived neurotrophic factor reduces blood glucose level in obese diabetic mice but not in normal mice. Biochem Biophys Res Commun 238:633–637PubMedCrossRef
8.
go back to reference Tonra JR, Ono M, Liu X et al (1999) Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-Lepr(db)/lepr(db) mice. Diabetes 48:588–594PubMedCrossRef Tonra JR, Ono M, Liu X et al (1999) Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-Lepr(db)/lepr(db) mice. Diabetes 48:588–594PubMedCrossRef
9.
go back to reference Nakagawa T, Tsuchida A, Itakura Y et al (2000) Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes 49:436–444PubMedCrossRef Nakagawa T, Tsuchida A, Itakura Y et al (2000) Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes 49:436–444PubMedCrossRef
10.
go back to reference Kernie SG, Liebl DJ, Parada LF (2000) BDNF regulates eating behavior and locomotor activity in mice. EMBO J 19:1290–1300PubMedCrossRef Kernie SG, Liebl DJ, Parada LF (2000) BDNF regulates eating behavior and locomotor activity in mice. EMBO J 19:1290–1300PubMedCrossRef
11.
go back to reference Cotman CW (2005) The role of neurotrophins in brain aging: a perspective in honor of Regino Perez-Polo. Neurochem Res 30:877–881PubMedCrossRef Cotman CW (2005) The role of neurotrophins in brain aging: a perspective in honor of Regino Perez-Polo. Neurochem Res 30:877–881PubMedCrossRef
12.
go back to reference Strachan MW, Deary IJ, Ewing FM, Frier BM (1997) Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care 20:438–445PubMedCrossRef Strachan MW, Deary IJ, Ewing FM, Frier BM (1997) Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care 20:438–445PubMedCrossRef
13.
go back to reference Awad N, Gagnon M, Messier C (2004) The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol 26:1044–1080PubMedCrossRef Awad N, Gagnon M, Messier C (2004) The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol 26:1044–1080PubMedCrossRef
14.
go back to reference Allen KV, Frier BM, Strachan MW (2004) The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations. Eur J Pharmacol 19 (490):169–175CrossRef Allen KV, Frier BM, Strachan MW (2004) The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations. Eur J Pharmacol 19 (490):169–175CrossRef
15.
go back to reference Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74PubMedCrossRef Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74PubMedCrossRef
16.
go back to reference Anderson RJ, Freedland KE, Clouse RE, Lustman PJ (2001) The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 24:1069–1078PubMedCrossRef Anderson RJ, Freedland KE, Clouse RE, Lustman PJ (2001) The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 24:1069–1078PubMedCrossRef
17.
go back to reference Hassing LB, Hofer SM, Nilsson SE et al (2004) Comorbid type 2 diabetes mellitus and hypertension exacerbates cognitive decline: evidence from a longitudinal study. Age Ageing 33:355–361PubMedCrossRef Hassing LB, Hofer SM, Nilsson SE et al (2004) Comorbid type 2 diabetes mellitus and hypertension exacerbates cognitive decline: evidence from a longitudinal study. Age Ageing 33:355–361PubMedCrossRef
18.
go back to reference Kanaya AM, Barrett-Connor E, Gildengorin G, Yaffe K (2004) Change in cognitive function by glucose tolerance status in older adults: a 4-year prospective study of the Rancho Bernardo study cohort. Arch Intern Med 164:1327–1333PubMedCrossRef Kanaya AM, Barrett-Connor E, Gildengorin G, Yaffe K (2004) Change in cognitive function by glucose tolerance status in older adults: a 4-year prospective study of the Rancho Bernardo study cohort. Arch Intern Med 164:1327–1333PubMedCrossRef
19.
go back to reference Bruce DG, Davis WA, Starkstein SE, Davis TM (2005) A prospective study of depression and mortality in patients with type 2 diabetes: The Fremantle Diabetes Study. Diabetologia 48:2532–2539PubMedCrossRef Bruce DG, Davis WA, Starkstein SE, Davis TM (2005) A prospective study of depression and mortality in patients with type 2 diabetes: The Fremantle Diabetes Study. Diabetologia 48:2532–2539PubMedCrossRef
20.
go back to reference Egan MF, Kojima M, Callicott JH et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269PubMedCrossRef Egan MF, Kojima M, Callicott JH et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269PubMedCrossRef
21.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRef Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRef
22.
go back to reference Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27:1487–1495PubMedCrossRef Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27:1487–1495PubMedCrossRef
23.
go back to reference Lommatzsch M, Zingler D, Schuhbaeck K et al (2005) The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging 26:115–123PubMedCrossRef Lommatzsch M, Zingler D, Schuhbaeck K et al (2005) The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging 26:115–123PubMedCrossRef
24.
go back to reference Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ (1998) Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology 37:1553–1561PubMedCrossRef Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ (1998) Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology 37:1553–1561PubMedCrossRef
25.
go back to reference Li Y, Rowland C, Tacey K et al (2005) The BDNF Val66Met polymorphism is not associated with late onset Alzheimer’s disease in three case–control samples. Mol Psychiatry 10:809–810PubMedCrossRef Li Y, Rowland C, Tacey K et al (2005) The BDNF Val66Met polymorphism is not associated with late onset Alzheimer’s disease in three case–control samples. Mol Psychiatry 10:809–810PubMedCrossRef
26.
go back to reference Surtees PG, Wainwright NW, Willis-Owen SA et al (2006) No association between the BDNF Val66Met polymorphism and mood status in a non-clinical community sample of 7389 older adults. J Psychiatr Res (in press). DOI 10.1016/j.jpsychires.2006.05.015 Surtees PG, Wainwright NW, Willis-Owen SA et al (2006) No association between the BDNF Val66Met polymorphism and mood status in a non-clinical community sample of 7389 older adults. J Psychiatr Res (in press). DOI 10.​1016/​j.​jpsychires.​2006.​05.​015
27.
go back to reference Hwang JP, Tsai SJ, Hong CJ, Yang CH, Lirng JF, Yang YM (2006) The Val66Met polymorphism of the brain-derived neurotrophic-factor gene is associated with geriatric depression. Neurobiol Aging 27:1834–1837PubMedCrossRef Hwang JP, Tsai SJ, Hong CJ, Yang CH, Lirng JF, Yang YM (2006) The Val66Met polymorphism of the brain-derived neurotrophic-factor gene is associated with geriatric depression. Neurobiol Aging 27:1834–1837PubMedCrossRef
28.
go back to reference Schumacher J, Jamra RA, Becker T et al (2005) Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry 58:307–314PubMedCrossRef Schumacher J, Jamra RA, Becker T et al (2005) Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry 58:307–314PubMedCrossRef
29.
go back to reference Matsushita S, Arai H, Matsui T et al (2005) Brain-derived neurotrophic factor gene polymorphisms and Alzheimer’s disease. J Neural Transm 112:703–711PubMedCrossRef Matsushita S, Arai H, Matsui T et al (2005) Brain-derived neurotrophic factor gene polymorphisms and Alzheimer’s disease. J Neural Transm 112:703–711PubMedCrossRef
30.
go back to reference Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7PubMedCrossRef Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7PubMedCrossRef
31.
go back to reference Bruunsgaard H (2005) Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol 78:819–835PubMedCrossRef Bruunsgaard H (2005) Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol 78:819–835PubMedCrossRef
32.
go back to reference Barzilay JI, Abraham L, Heckbert SR et al (2001) The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes 50:2384–2389PubMedCrossRef Barzilay JI, Abraham L, Heckbert SR et al (2001) The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes 50:2384–2389PubMedCrossRef
33.
go back to reference Duncan BB, Schmidt MI, Pankow JS et al (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52:1799–1805PubMedCrossRef Duncan BB, Schmidt MI, Pankow JS et al (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52:1799–1805PubMedCrossRef
34.
go back to reference Festa A, D’Agostino R Jr, Tracy RP, Haffner SM (2002) Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 51:1131–1137PubMedCrossRef Festa A, D’Agostino R Jr, Tracy RP, Haffner SM (2002) Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 51:1131–1137PubMedCrossRef
35.
go back to reference Freeman DJ, Norrie J, Caslake MJ et al (2002) C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 51:1596–1600PubMedCrossRef Freeman DJ, Norrie J, Caslake MJ et al (2002) C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 51:1596–1600PubMedCrossRef
36.
go back to reference Han TS, Sattar N, Williams K, Gonzalez-Villalpando C, Lean ME, Haffner SM (2002) Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care 25:2016–2021PubMedCrossRef Han TS, Sattar N, Williams K, Gonzalez-Villalpando C, Lean ME, Haffner SM (2002) Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care 25:2016–2021PubMedCrossRef
37.
go back to reference Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286:327–334PubMedCrossRef Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286:327–334PubMedCrossRef
38.
go back to reference Manni L, Nikolova V, Vyagova D, Chaldakov GN, Aloe L (2005) Reduced plasma levels of NGF and BDNF in patients with acute coronary syndromes. Int J Cardiol 102:169–171PubMedCrossRef Manni L, Nikolova V, Vyagova D, Chaldakov GN, Aloe L (2005) Reduced plasma levels of NGF and BDNF in patients with acute coronary syndromes. Int J Cardiol 102:169–171PubMedCrossRef
39.
go back to reference Ford ES (1999) Body mass index, diabetes, and C-reactive protein among US adults. Diabetes Care 22:1971–1977PubMedCrossRef Ford ES (1999) Body mass index, diabetes, and C-reactive protein among US adults. Diabetes Care 22:1971–1977PubMedCrossRef
40.
go back to reference Krabbe KS, Bruunsgaard H, Hansen CM et al (2001) Ageing is associated with a prolonged fever response in human endotoxemia. Clin Diagn Lab Immunol 8:333–338PubMedCrossRef Krabbe KS, Bruunsgaard H, Hansen CM et al (2001) Ageing is associated with a prolonged fever response in human endotoxemia. Clin Diagn Lab Immunol 8:333–338PubMedCrossRef
Metadata
Title
Brain-derived neurotrophic factor (BDNF) and type 2 diabetes
Authors
K. S. Krabbe
A. R. Nielsen
R. Krogh-Madsen
P. Plomgaard
P. Rasmussen
C. Erikstrup
C. P. Fischer
B. Lindegaard
A. M. W. Petersen
S. Taudorf
N. H. Secher
H. Pilegaard
H. Bruunsgaard
B. K. Pedersen
Publication date
01-02-2007
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 2/2007
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-006-0537-4

Other articles of this Issue 2/2007

Diabetologia 2/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine