Skip to main content
Top
Published in: Strahlentherapie und Onkologie 9/2018

01-09-2018 | Original Article

Treatment planning for spinal radiosurgery

A competitive multiplatform benchmark challenge

Authors: Dr. Christos Moustakis, PhD, Mark K. H. Chan, Jinkoo Kim, Joakim Nilsson, Alanah Bergman, Tewfik J. Bichay, Isabel Palazon Cano, Savino Cilla, Francesco Deodato, Raffaela Doro, Jürgen Dunst, Hans Theodor Eich, Pierre Fau, Ming Fong, Uwe Haverkamp, Simon Heinze, Guido Hildebrandt, Detlef Imhoff, Erik de Klerck, Janett Köhn, Ulrike Lambrecht, Britta Loutfi-Krauss, Fatemeh Ebrahimi, Laura Masi, Alan H. Mayville, Ante Mestrovic, Maaike Milder, Alessio G. Morganti, Dirk Rades, Ulla Ramm, Claus Rödel, Frank-Andre Siebert, Wilhelm den Toom, Lei Wang, Stefan Wurster, Achim Schweikard, Scott G. Soltys, Samuel Ryu, Oliver Blanck

Published in: Strahlentherapie und Onkologie | Issue 9/2018

Login to get access

Abstract

Purpose

To investigate the quality of treatment plans of spinal radiosurgery derived from different planning and delivery systems. The comparisons include robotic delivery and intensity modulated arc therapy (IMAT) approaches. Multiple centers with equal systems were used to reduce a bias based on individual’s planning abilities. The study used a series of three complex spine lesions to maximize the difference in plan quality among the various approaches.

Methods

Internationally recognized experts in the field of treatment planning and spinal radiosurgery from 12 centers with various treatment planning systems participated. For a complex spinal lesion, the results were compared against a previously published benchmark plan derived for CyberKnife radiosurgery (CKRS) using circular cones only. For two additional cases, one with multiple small lesions infiltrating three vertebrae and a single vertebra lesion treated with integrated boost, the results were compared against a benchmark plan generated using a best practice guideline for CKRS. All plans were rated based on a previously established ranking system.

Results

All 12 centers could reach equality (n = 4) or outperform (n = 8) the benchmark plan. For the multiple lesions and the single vertebra lesion plan only 5 and 3 of the 12 centers, respectively, reached equality or outperformed the best practice benchmark plan. However, the absolute differences in target and critical structure dosimetry were small and strongly planner-dependent rather than system-dependent. Overall, gantry-based IMAT with simple planning techniques (two coplanar arcs) produced faster treatments and significantly outperformed static gantry intensity modulated radiation therapy (IMRT) and multileaf collimator (MLC) or non-MLC CKRS treatment plan quality regardless of the system (mean rank out of 4 was 1.2 vs. 3.1, p = 0.002).

Conclusions

High plan quality for complex spinal radiosurgery was achieved among all systems and all participating centers in this planning challenge. This study concludes that simple IMAT techniques can generate significantly better plan quality compared to previous established CKRS benchmarks.
Appendix
Available only for authorised users
Literature
1.
go back to reference Husain ZA, Sahgal A, De Salles A et al (2017) Stereotactic body radiotherapy for de novo spinal metastases: systematic review. J Neurosurg Spine 27:295–302CrossRefPubMed Husain ZA, Sahgal A, De Salles A et al (2017) Stereotactic body radiotherapy for de novo spinal metastases: systematic review. J Neurosurg Spine 27:295–302CrossRefPubMed
2.
go back to reference Redmond KJ, Lo SS, Soltys SG et al (2017) Consensus guidelines for postoperative stereotactic body radiation therapy for spinal metastases: results of an international survey. J Neurosurg Spine 26(3):299–306CrossRefPubMed Redmond KJ, Lo SS, Soltys SG et al (2017) Consensus guidelines for postoperative stereotactic body radiation therapy for spinal metastases: results of an international survey. J Neurosurg Spine 26(3):299–306CrossRefPubMed
3.
go back to reference Myrehaug S, Sahgal A, Hayashi M et al (2017) Reirradiation spine stereotactic body radiation therapy for spinal metastases: systematic review. J Neurosurg Spine 27(4):428–435CrossRefPubMed Myrehaug S, Sahgal A, Hayashi M et al (2017) Reirradiation spine stereotactic body radiation therapy for spinal metastases: systematic review. J Neurosurg Spine 27(4):428–435CrossRefPubMed
4.
go back to reference Cox BW, Spratt DE, Lovelock M et al (2012) International Spine Radiosurgery Consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 83(5):e597–e605CrossRefPubMed Cox BW, Spratt DE, Lovelock M et al (2012) International Spine Radiosurgery Consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 83(5):e597–e605CrossRefPubMed
5.
go back to reference Thibault I, Chang EL, Sheehan J et al (2015) Response assessment after stereotactic body radiotherapy for spinal metastasis: a report from the SPIne response assessment in Neuro-Oncology (SPINO) group. Lancet Oncol 16(16):e595–e603CrossRefPubMed Thibault I, Chang EL, Sheehan J et al (2015) Response assessment after stereotactic body radiotherapy for spinal metastasis: a report from the SPIne response assessment in Neuro-Oncology (SPINO) group. Lancet Oncol 16(16):e595–e603CrossRefPubMed
6.
go back to reference Grimm J, LaCouture T, Croce R et al (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12(2):3368CrossRefPubMed Grimm J, LaCouture T, Croce R et al (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12(2):3368CrossRefPubMed
7.
go back to reference Patel VB, Wegner RE, Heron DE et al (2012) Comparison of whole versus partial vertebral body stereotactic body radiation therapy for spinal metastases. Technol Cancer Res Treat 11(2):105–115CrossRefPubMed Patel VB, Wegner RE, Heron DE et al (2012) Comparison of whole versus partial vertebral body stereotactic body radiation therapy for spinal metastases. Technol Cancer Res Treat 11(2):105–115CrossRefPubMed
9.
go back to reference Gallo JJ, Kaufman I, Powell R et al (2015) Single-fraction spine SBRT end-to-end testing on TomoTherapy, Vero, TrueBeam, and CyberKnife treatment platforms using a novel anthropomorphic phantom. J Appl Clin Med Phys 16(1):5120CrossRefPubMed Gallo JJ, Kaufman I, Powell R et al (2015) Single-fraction spine SBRT end-to-end testing on TomoTherapy, Vero, TrueBeam, and CyberKnife treatment platforms using a novel anthropomorphic phantom. J Appl Clin Med Phys 16(1):5120CrossRefPubMed
10.
go back to reference Fürweger C, Drexler C, Kufeld M et al (2010) Patient motion and targeting accuracy in robotic spinal radiosurgery: 260 single-fraction fiducial-free cases. Int J Radiat Oncol Biol Phys 78(3):937–945CrossRefPubMed Fürweger C, Drexler C, Kufeld M et al (2010) Patient motion and targeting accuracy in robotic spinal radiosurgery: 260 single-fraction fiducial-free cases. Int J Radiat Oncol Biol Phys 78(3):937–945CrossRefPubMed
11.
go back to reference Hazelaar C, Dahele M, Mostafavi H et al (2016) Subsecond and submillimeter resolution positional verification for stereotactic irradiation of spinal lesions. Int J Radiat Oncol Biol Phys 94(5):1154–1162CrossRefPubMed Hazelaar C, Dahele M, Mostafavi H et al (2016) Subsecond and submillimeter resolution positional verification for stereotactic irradiation of spinal lesions. Int J Radiat Oncol Biol Phys 94(5):1154–1162CrossRefPubMed
12.
go back to reference Han Z, Bondeson JC, Lewis JH et al (2016) Evaluation of initial setup accuracy and intrafraction motion for spine stereotactic body radiation therapy using stereotactic body frames. Pract Radiat Oncol 6(1):e17–e24CrossRefPubMed Han Z, Bondeson JC, Lewis JH et al (2016) Evaluation of initial setup accuracy and intrafraction motion for spine stereotactic body radiation therapy using stereotactic body frames. Pract Radiat Oncol 6(1):e17–e24CrossRefPubMed
13.
go back to reference Hazelaar C, Dahele M, Scheib S et al (2017) Verifying tumor position during stereotactic body radiation therapy delivery using (limited-arc) cone beam computed tomography imaging. Radiother Oncol 123(3):355–362CrossRefPubMed Hazelaar C, Dahele M, Scheib S et al (2017) Verifying tumor position during stereotactic body radiation therapy delivery using (limited-arc) cone beam computed tomography imaging. Radiother Oncol 123(3):355–362CrossRefPubMed
14.
go back to reference Schlaefer A, Schweikard A (2008) Stepwise multi-criteria optimization for robotic radiosurgery. Med Phys 35(5):2094–2103CrossRefPubMed Schlaefer A, Schweikard A (2008) Stepwise multi-criteria optimization for robotic radiosurgery. Med Phys 35(5):2094–2103CrossRefPubMed
16.
go back to reference Yang J, Ma L, Wang XS et al (2016) Dosimetric evaluation of 4 different treatment modalities for curative-intent stereotactic body radiation therapy for isolated thoracic spinal metastases. Med Dosim 41(2):105–112CrossRefPubMed Yang J, Ma L, Wang XS et al (2016) Dosimetric evaluation of 4 different treatment modalities for curative-intent stereotactic body radiation therapy for isolated thoracic spinal metastases. Med Dosim 41(2):105–112CrossRefPubMed
17.
go back to reference Kim J, Jang HS, Kim YS et al (2017) Comparison of spinal Stereotactic Body Radiotherapy (SBRT) planning techniques: intensity-modulated radiation therapy, modulated arc therapy, and helical tomotherapy. Med Dosim 42(3):210–215CrossRefPubMed Kim J, Jang HS, Kim YS et al (2017) Comparison of spinal Stereotactic Body Radiotherapy (SBRT) planning techniques: intensity-modulated radiation therapy, modulated arc therapy, and helical tomotherapy. Med Dosim 42(3):210–215CrossRefPubMed
18.
go back to reference Nalichowski A, Kaufman I, Gallo J et al (2017) Single fraction radiosurgery/stereotactic body radiation therapy (SBRT) for spine metastasis: a dosimetric comparison of multiple delivery platforms. J Appl Clin Med Phys 18(1):164–169PubMed Nalichowski A, Kaufman I, Gallo J et al (2017) Single fraction radiosurgery/stereotactic body radiation therapy (SBRT) for spine metastasis: a dosimetric comparison of multiple delivery platforms. J Appl Clin Med Phys 18(1):164–169PubMed
19.
go back to reference Moustakis C, Blanck O, Ebrahimi Tazehmahalleh F et al (2017) Planning benchmark study for SBRT of early stage NSCLC: results of the DEGRO Working Group Stereotactic Radiotherapy. Strahlenther Onkol 193(10):780–790CrossRefPubMed Moustakis C, Blanck O, Ebrahimi Tazehmahalleh F et al (2017) Planning benchmark study for SBRT of early stage NSCLC: results of the DEGRO Working Group Stereotactic Radiotherapy. Strahlenther Onkol 193(10):780–790CrossRefPubMed
20.
go back to reference Blanck O, Wang L, Baus W et al (2016) Inverse treatment planning for spinal robotic radiosurgery: an international multi-institutional benchmark trial. J Appl Clin Med Phys 17(3):313–330CrossRefPubMedPubMedCentral Blanck O, Wang L, Baus W et al (2016) Inverse treatment planning for spinal robotic radiosurgery: an international multi-institutional benchmark trial. J Appl Clin Med Phys 17(3):313–330CrossRefPubMedPubMedCentral
21.
go back to reference Echner GG, Kilby W, Lee M et al (2009) The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery. Phys Med Biol 54(18):5359–5380CrossRefPubMed Echner GG, Kilby W, Lee M et al (2009) The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery. Phys Med Biol 54(18):5359–5380CrossRefPubMed
22.
go back to reference Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35(1):310–317CrossRefPubMed Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35(1):310–317CrossRefPubMed
23.
go back to reference Kim J, Wen N, Jin JY et al (2012) Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT. J Appl Clin Med Phys 13(3):3729CrossRefPubMed Kim J, Wen N, Jin JY et al (2012) Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT. J Appl Clin Med Phys 13(3):3729CrossRefPubMed
24.
go back to reference Gete E, Duzenli C, Milette MP et al (2013) A Monte Carlo approach to validation of FFF VMAT treatment plans for the TrueBeam linac. Med Phys 40(2):21707CrossRefPubMed Gete E, Duzenli C, Milette MP et al (2013) A Monte Carlo approach to validation of FFF VMAT treatment plans for the TrueBeam linac. Med Phys 40(2):21707CrossRefPubMed
25.
go back to reference Masi L, Doro R, Favuzza V et al (2013) Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy. Med Phys 40(7):71718CrossRefPubMed Masi L, Doro R, Favuzza V et al (2013) Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy. Med Phys 40(7):71718CrossRefPubMed
26.
go back to reference Ramm U, Köhn J, Rodriguez Dominguez R et al (2014) Feasibility study of patient positioning verification in electron beam radiotherapy with an electronic portal imaging device (EPID). Phys Med 30(2):215–220CrossRefPubMed Ramm U, Köhn J, Rodriguez Dominguez R et al (2014) Feasibility study of patient positioning verification in electron beam radiotherapy with an electronic portal imaging device (EPID). Phys Med 30(2):215–220CrossRefPubMed
27.
go back to reference Cilla S, Deodato F, Macchia G et al (2016) Linac-based extracranial radiosurgery with Elekta volumetric modulated arc therapy and an anatomy-based treatment planning system: feasibility and initial experience. Med Dosim 41(2):166–172CrossRefPubMed Cilla S, Deodato F, Macchia G et al (2016) Linac-based extracranial radiosurgery with Elekta volumetric modulated arc therapy and an anatomy-based treatment planning system: feasibility and initial experience. Med Dosim 41(2):166–172CrossRefPubMed
28.
go back to reference Fürweger C, Prins P, Coskan H et al (2016) Characteristics and performance of the first commercial multileaf collimator for a robotic radiosurgery system. Med Phys 43(5):2063CrossRefPubMed Fürweger C, Prins P, Coskan H et al (2016) Characteristics and performance of the first commercial multileaf collimator for a robotic radiosurgery system. Med Phys 43(5):2063CrossRefPubMed
30.
go back to reference De Ornelas-Couto M, Bossart E, Ly B et al (2016) Radiation therapy for stereotactic body radiation therapy in spine tumors: linac or robotic? Biomed Phys Eng Express 2:15012CrossRef De Ornelas-Couto M, Bossart E, Ly B et al (2016) Radiation therapy for stereotactic body radiation therapy in spine tumors: linac or robotic? Biomed Phys Eng Express 2:15012CrossRef
31.
go back to reference Fürweger C, Drexler C, Muacevic A et al (2014) CyberKnife robotic spinal radiosurgery in prone position: dosimetric advantage due to posterior radiation access? J Appl Clin Med Phys 15(4):11–21CrossRefPubMedCentral Fürweger C, Drexler C, Muacevic A et al (2014) CyberKnife robotic spinal radiosurgery in prone position: dosimetric advantage due to posterior radiation access? J Appl Clin Med Phys 15(4):11–21CrossRefPubMedCentral
32.
go back to reference McGuinness CM, Gottschalk A, Lessard E et al (2015) Investigating the clinical advantages of a robotic linac equipped with a multileaf collimator in the treatment of brain and prostate cancer patients. J Appl Clin Med Phys 16(5):284–295CrossRefPubMedPubMedCentral McGuinness CM, Gottschalk A, Lessard E et al (2015) Investigating the clinical advantages of a robotic linac equipped with a multileaf collimator in the treatment of brain and prostate cancer patients. J Appl Clin Med Phys 16(5):284–295CrossRefPubMedPubMedCentral
33.
go back to reference Jang SY, Lalonde R, Ozhasoglu C, Burton S, Heron D, Huq MS (2016) Dosimetric comparison between cone/Iris-based and InCise MLC-based CyberKnife plans for single and multiple brain metastases. J Appl Clin Med Phys 17(5):1–16CrossRef Jang SY, Lalonde R, Ozhasoglu C, Burton S, Heron D, Huq MS (2016) Dosimetric comparison between cone/Iris-based and InCise MLC-based CyberKnife plans for single and multiple brain metastases. J Appl Clin Med Phys 17(5):1–16CrossRef
34.
go back to reference Kearney V, Cheung JP, McGuinness C et al (2017) CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife. Phys Med Biol 62(14):5777–5789CrossRefPubMed Kearney V, Cheung JP, McGuinness C et al (2017) CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife. Phys Med Biol 62(14):5777–5789CrossRefPubMed
35.
go back to reference Foy JJ, Marsh R, Ten Haken RK et al (2017) An analysis of knowledge-based planning for stereotactic body radiation therapy of the spine. Pract Radiat Oncol 7(5):e355–e360CrossRefPubMed Foy JJ, Marsh R, Ten Haken RK et al (2017) An analysis of knowledge-based planning for stereotactic body radiation therapy of the spine. Pract Radiat Oncol 7(5):e355–e360CrossRefPubMed
36.
go back to reference Okoye CC, Patel RB, Hasan S et al (2016) Comparison of ray tracing and Monte Carlo calculation algorithms for thoracic spine lesions treated with Cyberknife-based stereotactic body radiation therapy. Technol Cancer Res Treat 15(1):196–202CrossRefPubMed Okoye CC, Patel RB, Hasan S et al (2016) Comparison of ray tracing and Monte Carlo calculation algorithms for thoracic spine lesions treated with Cyberknife-based stereotactic body radiation therapy. Technol Cancer Res Treat 15(1):196–202CrossRefPubMed
Metadata
Title
Treatment planning for spinal radiosurgery
A competitive multiplatform benchmark challenge
Authors
Dr. Christos Moustakis, PhD
Mark K. H. Chan
Jinkoo Kim
Joakim Nilsson
Alanah Bergman
Tewfik J. Bichay
Isabel Palazon Cano
Savino Cilla
Francesco Deodato
Raffaela Doro
Jürgen Dunst
Hans Theodor Eich
Pierre Fau
Ming Fong
Uwe Haverkamp
Simon Heinze
Guido Hildebrandt
Detlef Imhoff
Erik de Klerck
Janett Köhn
Ulrike Lambrecht
Britta Loutfi-Krauss
Fatemeh Ebrahimi
Laura Masi
Alan H. Mayville
Ante Mestrovic
Maaike Milder
Alessio G. Morganti
Dirk Rades
Ulla Ramm
Claus Rödel
Frank-Andre Siebert
Wilhelm den Toom
Lei Wang
Stefan Wurster
Achim Schweikard
Scott G. Soltys
Samuel Ryu
Oliver Blanck
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 9/2018
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-018-1314-2

Other articles of this Issue 9/2018

Strahlentherapie und Onkologie 9/2018 Go to the issue