Skip to main content
Top
Published in: Strahlentherapie und Onkologie 3/2017

01-03-2017 | Original Article

Comparison of prostate positioning guided by three-dimensional transperineal ultrasound and cone beam CT

Authors: Dr. med. Minglun Li, Hendrik Ballhausen, Nina-Sophie Hegemann, Michael Reiner, Stefan Tritschler, Christian Gratzke, Farkhad Manapov, Stefanie Corradini, Ute Ganswindt, Claus Belka

Published in: Strahlentherapie und Onkologie | Issue 3/2017

Login to get access

Abstract

Objective

The accuracy of a transperineal three-dimensional ultrasound system (3DUS) was assessed for prostate positioning and compared to fiducial- and bone-based positioning in kV cone beam computed tomography (CBCT) during definitive radiotherapy of prostate cancer.

Methods

Each of the 7 patients had three fiducial markers implanted into the prostate before treatment. Prostate positioning was simultaneously measured by 3DUS and CBCT before each fraction. In total, 177 pairs of 3DUS and CBCT scans were collected. Bone-match and seed-match were performed for each CBCT. Using seed-match as a reference, the accuracy of 3DUS and bone-match was evaluated. Systematic and random errors as well as optimal setup margins were calculated for 3DUS and bone-match.

Results

The discrepancy between 3DUS and seed-match in CBCT (average ± standard deviation) was 0.0 ± 1.7 mm laterally, 0.2 ± 2.0 mm longitudinally, and 0.3 ± 1.7 mm vertically. Using seed-match as a reference, systematic errors for 3DUS were 1.2 mm, 1.1 mm, and 0.9 mm; and random errors were 1.4 mm, 1.8 mm, and 1.6 mm, on lateral, longitudinal, and vertical axes, respectively. By analogy, the difference of bone-match to seed-match was 0.1 ± 1.1 mm laterally, 1.3 ± 3.8 mm longitudinally, and 1.3 ± 4.5 mm vertically. Systematic errors were 0.5 mm, 2.2 mm, and 2.6 mm; and random errors were 1.0 mm, 3.1 mm, and 3.9 mm on lateral, longitudinal, and vertical axes, respectively. The accuracy of 3DUS was significantly higher than that of bone-match on longitudinal and vertical axes, but not on the lateral axis.

Conclusion

Image-guided radiotherapy of prostate cancer based on transperineal 3DUS was feasible, with overall small discrepancy to seed-match in CBCT in this retrospective study. Compared to bone-match, transperineal 3DUS achieved higher accuracy on longitudinal and vertical axes.
Literature
1.
go back to reference Arcangeli G, Saracino B, Gomellini S et al (2010) A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int J Radiat Oncol Biol Phys 78:11–18CrossRefPubMed Arcangeli G, Saracino B, Gomellini S et al (2010) A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int J Radiat Oncol Biol Phys 78:11–18CrossRefPubMed
2.
go back to reference Aubry JF, Beaulieu L, Girouard LM et al (2004) Measurements of intrafraction motion and interfraction and intrafraction rotation of prostate by three-dimensional analysis of daily portal imaging with radiopaque markers. Int J Radiat Oncol Biol Phys 60:30–39CrossRefPubMed Aubry JF, Beaulieu L, Girouard LM et al (2004) Measurements of intrafraction motion and interfraction and intrafraction rotation of prostate by three-dimensional analysis of daily portal imaging with radiopaque markers. Int J Radiat Oncol Biol Phys 60:30–39CrossRefPubMed
3.
go back to reference Ballhausen H, Hieber S, Li M et al (2014) Technical note: millimeter precision in ultrasound based patient positioning: experimental quantification of inherent technical limitations. Med Phys 41:081718CrossRefPubMed Ballhausen H, Hieber S, Li M et al (2014) Technical note: millimeter precision in ultrasound based patient positioning: experimental quantification of inherent technical limitations. Med Phys 41:081718CrossRefPubMed
4.
go back to reference Beltran C, Herman M, Davis B (2008) Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 70:289–295CrossRefPubMed Beltran C, Herman M, Davis B (2008) Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 70:289–295CrossRefPubMed
5.
go back to reference Boda-Heggemann J, Kohler FM, Kupper B et al (2008) Accuracy of ultrasound-based (BAT) prostate-repositioning: a three-dimensional on-line fiducial-based assessment with cone-beam computed tomography. Int J Radiat Oncol Biol Phys 70:1247–1255CrossRefPubMed Boda-Heggemann J, Kohler FM, Kupper B et al (2008) Accuracy of ultrasound-based (BAT) prostate-repositioning: a three-dimensional on-line fiducial-based assessment with cone-beam computed tomography. Int J Radiat Oncol Biol Phys 70:1247–1255CrossRefPubMed
6.
go back to reference Cahlon O, Zelefsky MJ, Shippy A et al (2008) Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys 71:330–337CrossRefPubMed Cahlon O, Zelefsky MJ, Shippy A et al (2008) Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys 71:330–337CrossRefPubMed
7.
go back to reference Chandra A, Dong L, Huang E et al (2003) Experience of ultrasound-based daily prostate localization. Int J Radiat Oncol Biol Phys 56:436–447CrossRefPubMed Chandra A, Dong L, Huang E et al (2003) Experience of ultrasound-based daily prostate localization. Int J Radiat Oncol Biol Phys 56:436–447CrossRefPubMed
8.
go back to reference Crehange G, Mirjolet C, Gauthier M et al (2012) Clinical impact of margin reduction on late toxicity and short-term biochemical control for patients treated with daily on-line image guided IMRT for prostate cancer. Radiother Oncol 103:244–246CrossRefPubMed Crehange G, Mirjolet C, Gauthier M et al (2012) Clinical impact of margin reduction on late toxicity and short-term biochemical control for patients treated with daily on-line image guided IMRT for prostate cancer. Radiother Oncol 103:244–246CrossRefPubMed
9.
go back to reference Crook JM, Raymond Y, Salhani D et al (1995) Prostate motion during standard radiotherapy as assessed by fiducial markers. Radiother Oncol 37:35–42CrossRefPubMed Crook JM, Raymond Y, Salhani D et al (1995) Prostate motion during standard radiotherapy as assessed by fiducial markers. Radiother Oncol 37:35–42CrossRefPubMed
10.
go back to reference Cury FL, Shenouda G, Souhami L et al (2006) Ultrasound-based image guided radiotherapy for prostate cancer: comparison of cross-modality and intramodality methods for daily localization during external beam radiotherapy. Int J Radiat Oncol Biol Phys 66:1562–1567CrossRefPubMed Cury FL, Shenouda G, Souhami L et al (2006) Ultrasound-based image guided radiotherapy for prostate cancer: comparison of cross-modality and intramodality methods for daily localization during external beam radiotherapy. Int J Radiat Oncol Biol Phys 66:1562–1567CrossRefPubMed
11.
go back to reference Dearnaley D, Syndikus I, Sumo G et al (2012) Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from the CHHiP randomised controlled trial. Lancet Oncol 13:43–54CrossRefPubMed Dearnaley D, Syndikus I, Sumo G et al (2012) Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from the CHHiP randomised controlled trial. Lancet Oncol 13:43–54CrossRefPubMed
12.
go back to reference Dearnaley DP, Jovic G, Syndikus I et al (2014) Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol 15:464–473CrossRefPubMed Dearnaley DP, Jovic G, Syndikus I et al (2014) Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol 15:464–473CrossRefPubMed
13.
go back to reference Dobler B, Mai S, Ross C et al (2006) Evaluation of possible prostate displacement induced by pressure applied during transabdominal ultrasound image acquisition. Strahlenther Onkol 182:240–246CrossRefPubMed Dobler B, Mai S, Ross C et al (2006) Evaluation of possible prostate displacement induced by pressure applied during transabdominal ultrasound image acquisition. Strahlenther Onkol 182:240–246CrossRefPubMed
14.
go back to reference Fargier-Voiron M, Presles B, Pommier P et al (2016) Evaluation of a new transperineal ultrasound probe for inter-fraction image-guidance for definitive and post-operative prostate cancer radiotherapy. Phys Med 32:499–505CrossRefPubMed Fargier-Voiron M, Presles B, Pommier P et al (2016) Evaluation of a new transperineal ultrasound probe for inter-fraction image-guidance for definitive and post-operative prostate cancer radiotherapy. Phys Med 32:499–505CrossRefPubMed
15.
go back to reference Fargier-Voiron M, Presles B, Pommier P et al (2014) Impact of probe pressure variability on prostate localization for ultrasound-based image-guided radiotherapy. Radiother Oncol 111:132–137CrossRefPubMed Fargier-Voiron M, Presles B, Pommier P et al (2014) Impact of probe pressure variability on prostate localization for ultrasound-based image-guided radiotherapy. Radiother Oncol 111:132–137CrossRefPubMed
16.
go back to reference Foster RD, Solberg TD, Li HS et al (2010) Comparison of transabdominal ultrasound and electromagnetic transponders for prostate localization. J Appl Clin Med Phys 11:2924PubMed Foster RD, Solberg TD, Li HS et al (2010) Comparison of transabdominal ultrasound and electromagnetic transponders for prostate localization. J Appl Clin Med Phys 11:2924PubMed
17.
go back to reference Gadia R, Leite ET, Gabrielli FG et al (2013) Outcomes of high-dose intensity-modulated radiotherapy alone with 1 cm planning target volume posterior margin for localized prostate cancer. Radiat Oncol 8:285CrossRefPubMedPubMedCentral Gadia R, Leite ET, Gabrielli FG et al (2013) Outcomes of high-dose intensity-modulated radiotherapy alone with 1 cm planning target volume posterior margin for localized prostate cancer. Radiat Oncol 8:285CrossRefPubMedPubMedCentral
18.
go back to reference Ghilezan MJ, Jaffray DA, Siewerdsen JH et al (2005) Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62:406–417CrossRefPubMed Ghilezan MJ, Jaffray DA, Siewerdsen JH et al (2005) Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62:406–417CrossRefPubMed
19.
go back to reference Kuban DA, Dong L, Cheung R et al (2005) Ultrasound-based localization. Semin Radiat Oncol 15:180–191CrossRefPubMed Kuban DA, Dong L, Cheung R et al (2005) Ultrasound-based localization. Semin Radiat Oncol 15:180–191CrossRefPubMed
20.
go back to reference Kupelian P, Willoughby T, Mahadevan A et al (2007) Multi-institutional clinical experience with the Calypso system in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 67:1088–1098CrossRefPubMed Kupelian P, Willoughby T, Mahadevan A et al (2007) Multi-institutional clinical experience with the Calypso system in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 67:1088–1098CrossRefPubMed
21.
go back to reference Kupelian PA, Willoughby TR, Meeks SL et al (2005) Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability. Int J Radiat Oncol Biol Phys 62:1291–1296CrossRefPubMed Kupelian PA, Willoughby TR, Meeks SL et al (2005) Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability. Int J Radiat Oncol Biol Phys 62:1291–1296CrossRefPubMed
22.
go back to reference Letourneau D, Martinez AA, Lockman D et al (2005) Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients. Int J Radiat Oncol Biol Phys 62:1239–1246CrossRefPubMed Letourneau D, Martinez AA, Lockman D et al (2005) Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients. Int J Radiat Oncol Biol Phys 62:1239–1246CrossRefPubMed
23.
go back to reference Li M, Ballhausen H, Hegemann NS et al (2015) A comparative assessment of prostate positioning guided by three-dimensional ultrasound and cone beam CT. Radiat Oncol 10:82CrossRefPubMedPubMedCentral Li M, Ballhausen H, Hegemann NS et al (2015) A comparative assessment of prostate positioning guided by three-dimensional ultrasound and cone beam CT. Radiat Oncol 10:82CrossRefPubMedPubMedCentral
24.
go back to reference McNair HA, Mangar SA, Coffey J et al (2006) A comparison of CT- and ultrasound-based imaging to localize the prostate for external beam radiotherapy. Int J Radiat Oncol Biol Phys 65:678–687CrossRefPubMed McNair HA, Mangar SA, Coffey J et al (2006) A comparison of CT- and ultrasound-based imaging to localize the prostate for external beam radiotherapy. Int J Radiat Oncol Biol Phys 65:678–687CrossRefPubMed
25.
go back to reference Peeters ST, Heemsbergen WD, Koper PC et al (2006) Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 24:1990–1996CrossRefPubMed Peeters ST, Heemsbergen WD, Koper PC et al (2006) Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 24:1990–1996CrossRefPubMed
26.
go back to reference Peng LC, Yang CC, Sim S et al (2007) Dose comparison of megavoltage cone-beam and orthogonal-pair portal images. J Appl Clin Med Phys 8:10–20 Peng LC, Yang CC, Sim S et al (2007) Dose comparison of megavoltage cone-beam and orthogonal-pair portal images. J Appl Clin Med Phys 8:10–20
27.
go back to reference Perks JR, Lehmann J, Chen AM et al (2008) Comparison of peripheral dose from image-guided radiation therapy (IGRT) using kV cone beam CT to intensity-modulated radiation therapy (IMRT). Radiother Oncol 89:304–310CrossRefPubMed Perks JR, Lehmann J, Chen AM et al (2008) Comparison of peripheral dose from image-guided radiation therapy (IGRT) using kV cone beam CT to intensity-modulated radiation therapy (IMRT). Radiother Oncol 89:304–310CrossRefPubMed
28.
go back to reference Pollack A, Zagars GK, Starkschall G et al (2002) Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 53:1097–1105CrossRefPubMed Pollack A, Zagars GK, Starkschall G et al (2002) Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 53:1097–1105CrossRefPubMed
29.
go back to reference Robinson D, Liu D, Steciw S et al (2012) An evaluation of the Clarity 3D ultrasound system for prostate localization. J Appl Clin Med Phys 13:3753PubMed Robinson D, Liu D, Steciw S et al (2012) An evaluation of the Clarity 3D ultrasound system for prostate localization. J Appl Clin Med Phys 13:3753PubMed
30.
go back to reference Serago CF, Buskirk SJ, Igel TC et al (2006) Comparison of daily megavoltage electronic portal imaging or kilovoltage imaging with marker seeds to ultrasound imaging or skin marks for prostate localization and treatment positioning in patients with prostate cancer. Int J Radiat Oncol Biol Phys 65:1585–1592CrossRefPubMed Serago CF, Buskirk SJ, Igel TC et al (2006) Comparison of daily megavoltage electronic portal imaging or kilovoltage imaging with marker seeds to ultrasound imaging or skin marks for prostate localization and treatment positioning in patients with prostate cancer. Int J Radiat Oncol Biol Phys 65:1585–1592CrossRefPubMed
31.
go back to reference Shinohara K, Roach M 3rd (2008) Technique for implantation of fiducial markers in the prostate. Urology 71:196–200CrossRefPubMed Shinohara K, Roach M 3rd (2008) Technique for implantation of fiducial markers in the prostate. Urology 71:196–200CrossRefPubMed
32.
go back to reference Skarsgard D, Cadman P, El-Gayed A et al (2010) Planning target volume margins for prostate radiotherapy using daily electronic portal imaging and implanted fiducial markers. Radiat Oncol 5:52CrossRefPubMedPubMedCentral Skarsgard D, Cadman P, El-Gayed A et al (2010) Planning target volume margins for prostate radiotherapy using daily electronic portal imaging and implanted fiducial markers. Radiat Oncol 5:52CrossRefPubMedPubMedCentral
33.
go back to reference Van Der Heide UA, Kotte AN, Dehnad H et al (2007) Analysis of fiducial marker-based position verification in the external beam radiotherapy of patients with prostate cancer. Radiother Oncol 82:38–45CrossRefPubMed Van Der Heide UA, Kotte AN, Dehnad H et al (2007) Analysis of fiducial marker-based position verification in the external beam radiotherapy of patients with prostate cancer. Radiother Oncol 82:38–45CrossRefPubMed
34.
go back to reference Van Der Meer S, Bloemen-Van Gurp E, Hermans J et al (2013) Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers. Med Phys 40:071707CrossRefPubMed Van Der Meer S, Bloemen-Van Gurp E, Hermans J et al (2013) Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers. Med Phys 40:071707CrossRefPubMed
35.
go back to reference Van Herk M, Remeijer P, Rasch C et al (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135CrossRefPubMed Van Herk M, Remeijer P, Rasch C et al (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135CrossRefPubMed
36.
go back to reference Wertz H, Lohr F, Dobler B et al (2007) Dosimetric consequences of a translational isocenter correction based on image guidance for intensity modulated radiotherapy (IMRT) of the prostate. Phys Med Biol 52:5655–5665CrossRefPubMed Wertz H, Lohr F, Dobler B et al (2007) Dosimetric consequences of a translational isocenter correction based on image guidance for intensity modulated radiotherapy (IMRT) of the prostate. Phys Med Biol 52:5655–5665CrossRefPubMed
37.
go back to reference Wu Q, Ivaldi G, Liang J et al (2006) Geometric and dosimetric evaluations of an online image-guidance strategy for 3D-CRT of prostate cancer. Int J Radiat Oncol Biol Phys 64:1596–1609CrossRefPubMed Wu Q, Ivaldi G, Liang J et al (2006) Geometric and dosimetric evaluations of an online image-guidance strategy for 3D-CRT of prostate cancer. Int J Radiat Oncol Biol Phys 64:1596–1609CrossRefPubMed
38.
go back to reference Zelefsky MJ, Levin EJ, Hunt M et al (2008) Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 70:1124–1129CrossRefPubMed Zelefsky MJ, Levin EJ, Hunt M et al (2008) Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 70:1124–1129CrossRefPubMed
Metadata
Title
Comparison of prostate positioning guided by three-dimensional transperineal ultrasound and cone beam CT
Authors
Dr. med. Minglun Li
Hendrik Ballhausen
Nina-Sophie Hegemann
Michael Reiner
Stefan Tritschler
Christian Gratzke
Farkhad Manapov
Stefanie Corradini
Ute Ganswindt
Claus Belka
Publication date
01-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 3/2017
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-016-1084-7

Other articles of this Issue 3/2017

Strahlentherapie und Onkologie 3/2017 Go to the issue