Skip to main content
Top
Published in: Strahlentherapie und Onkologie 9/2016

01-09-2016 | Original Article

MRI morphologic alterations after liver SBRT

Direct dose correlation with intermodal matching

Authors: Judit Boda-Heggemann, MD PhD, Ulrike Attenberger, MD, Johannes Budjan, MD, Anika Jahnke, PhD, Lennart Jahnke, PhD, Lena Vogel, Anna O. Simeonova-Chergou, MD, Carsten Herskind, PhD, Frederik Wenz, MD, Frank Lohr, MD

Published in: Strahlentherapie und Onkologie | Issue 9/2016

Login to get access

Abstract

Aim

CT morphologic and histopathologic alterations have been reported after SBRT. We analyzed the correlation of MRI morphologic alterations with radiation doses to assess the potential for MRI-based dose–effect correlation in healthy liver tissue.

Patients and methods

MRI data of 24 patients with liver metastases 7±3 weeks after image-guided SBRT in deep-inspiration breath-hold were retrospectively analyzed. MRI images were intermodally matched to the planning CT and corresponding dose distribution. Absolute doses were converted to EQD2,α/β =x with α/β values of 2, 3 for healthy liver tissue, 8 Gy for modelled predamaged liver tissue and 10 Gy for tumor tissue.

Results

A central nonenhancing area was observed within the isodose lines of nominally 48.2 ± 15.2 Gy, EQD2Gy/α/β =10 92.5 ± 27.7 Gy. Contrast-enhancement around the central nonenhancing area was observed within the isodose lines of nominally 46.9 ± 15.3 Gy, EQD2Gy/α/β =10 90.5 ± 28.3 Gy.
Outside the high-dose volume, in the beam path, characteristic sharply defined, nonblurred MRI morphologic alterations were observed that corresponded with the following isodose lines: T1-intensity changes occurred at isodose lines of nominally 21.9 ± 6.7 Gy (EQD2,α/β =2 42.5 ± 8.7 Gy, EQD2,α/β =3 38.5 ± 7.6 Gy, EQD2,α/β =8 30.2 ±6.3 Gy). T2-hyper/hypointensity was observed within isodose lines of nominally 22.4 ± 6.6 Gy (EQD2,α/β=2 42.7 ± 8.1 Gy, EQD2,α/β=3 38.7 ± 7 Gy; EQD2,α/β=8 30.5 ± 5.9 Gy).

Conclusions

Using deformable matching, direct spatial/dosimetric correlation of SBRT-induced changes in liver tissue was possible. In the PTV high-dose region, a central nonenhancing area and peripheral contrast medium accumulation was observed. Beam path doses of 38–42 Gy (EQD2,α/β =2–3) induce characteristic MRI morphologic alterations.
Literature
1.
go back to reference Boda-Heggemann J, Dinter D, Weiss C et al (2012) Hypofractionated image-guided breath-hold SABR (stereotactic ablative body radiotherapy) of liver metastases--clinical results. Radiat Oncol 7:92CrossRefPubMedPubMedCentral Boda-Heggemann J, Dinter D, Weiss C et al (2012) Hypofractionated image-guided breath-hold SABR (stereotactic ablative body radiotherapy) of liver metastases--clinical results. Radiat Oncol 7:92CrossRefPubMedPubMedCentral
2.
go back to reference Habermehl D, Debus J, Ganten T et al (2013) Hypofractionated carbon ion therapy delivered with scanned ion beams for patients with hepatocellular carcinoma - feasibility and clinical response. Radiat Oncol 8:59CrossRefPubMedPubMedCentral Habermehl D, Debus J, Ganten T et al (2013) Hypofractionated carbon ion therapy delivered with scanned ion beams for patients with hepatocellular carcinoma - feasibility and clinical response. Radiat Oncol 8:59CrossRefPubMedPubMedCentral
3.
go back to reference Sanuki N, Takeda A, Oku Y et al (2014) Threshold doses for focal liver reaction after stereotactic ablative body radiation therapy for small hepatocellular carcinoma depend on liver function: evaluation on magnetic resonance imaging with Gd-EOB-DTPA. Int J Radiat Oncol Biol Phys 88:306–311CrossRefPubMed Sanuki N, Takeda A, Oku Y et al (2014) Threshold doses for focal liver reaction after stereotactic ablative body radiation therapy for small hepatocellular carcinoma depend on liver function: evaluation on magnetic resonance imaging with Gd-EOB-DTPA. Int J Radiat Oncol Biol Phys 88:306–311CrossRefPubMed
4.
go back to reference Boda-Heggemann J, Mai S, Fleckenstein J et al (2013) Flattening-filter-free intensity modulated breath-hold image-guided SABR (Stereotactic ABlative Radiotherapy) can be applied in a 15-min treatment slot. Radiother Oncol 109:505–509CrossRefPubMed Boda-Heggemann J, Mai S, Fleckenstein J et al (2013) Flattening-filter-free intensity modulated breath-hold image-guided SABR (Stereotactic ABlative Radiotherapy) can be applied in a 15-min treatment slot. Radiother Oncol 109:505–509CrossRefPubMed
5.
go back to reference Marks LB, Yorke ED, Jackson A et al (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76:S10–S19CrossRefPubMedPubMedCentral Marks LB, Yorke ED, Jackson A et al (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76:S10–S19CrossRefPubMedPubMedCentral
6.
go back to reference Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122CrossRefPubMed Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122CrossRefPubMed
7.
go back to reference Austin-Seymour MM, Chen GT, Castro JR et al (1986) Dose volume histogram analysis of liver radiation tolerance. Int J Radiat Oncol Biol Phys 12:31–35CrossRefPubMed Austin-Seymour MM, Chen GT, Castro JR et al (1986) Dose volume histogram analysis of liver radiation tolerance. Int J Radiat Oncol Biol Phys 12:31–35CrossRefPubMed
8.
go back to reference Dawson LA, Ten Haken RK (2005) Partial volume tolerance of the liver to radiation. Semin Radiat Oncol 15:279–283CrossRefPubMed Dawson LA, Ten Haken RK (2005) Partial volume tolerance of the liver to radiation. Semin Radiat Oncol 15:279–283CrossRefPubMed
9.
go back to reference Son SH, Jang HS, Lee H et al (2013) Determination of the alpha/beta ratio for the normal liver on the basis of radiation-induced hepatic toxicities in patients with hepatocellular carcinoma. Radiat Oncol 8:61CrossRefPubMedPubMedCentral Son SH, Jang HS, Lee H et al (2013) Determination of the alpha/beta ratio for the normal liver on the basis of radiation-induced hepatic toxicities in patients with hepatocellular carcinoma. Radiat Oncol 8:61CrossRefPubMedPubMedCentral
10.
go back to reference Rusthoven KE, Kavanagh BD, Cardenes H et al (2009) Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol 27:1572–1578CrossRefPubMed Rusthoven KE, Kavanagh BD, Cardenes H et al (2009) Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol 27:1572–1578CrossRefPubMed
11.
go back to reference Yamashita H, Onishi H, Murakami N et al (2015) Survival outcomes after stereotactic body radiotherapy for 79 Japanese patients with hepatocellular carcinoma. J Radiat Res 56:561–567CrossRefPubMedPubMedCentral Yamashita H, Onishi H, Murakami N et al (2015) Survival outcomes after stereotactic body radiotherapy for 79 Japanese patients with hepatocellular carcinoma. J Radiat Res 56:561–567CrossRefPubMedPubMedCentral
13.
go back to reference Herfarth KK, Hof H, Bahner ML et al (2003) Assessment of focal liver reaction by multiphasic CT after stereotactic single-dose radiotherapy of liver tumors. Int J Radiat Oncol Biol Phys 57:444–451CrossRefPubMed Herfarth KK, Hof H, Bahner ML et al (2003) Assessment of focal liver reaction by multiphasic CT after stereotactic single-dose radiotherapy of liver tumors. Int J Radiat Oncol Biol Phys 57:444–451CrossRefPubMed
14.
go back to reference Olsen CC, Welsh J, Kavanagh BD et al (2009) Microscopic and macroscopic tumor and parenchymal effects of liver stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 73:1414–1424CrossRefPubMed Olsen CC, Welsh J, Kavanagh BD et al (2009) Microscopic and macroscopic tumor and parenchymal effects of liver stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 73:1414–1424CrossRefPubMed
15.
go back to reference Lo SS, Teh BS, Wang JZ et al (2011) Imaging changes after stereotactic body radiation therapy for lung and liver tumors. Expert Rev Anticancer Ther 11:613–620CrossRefPubMed Lo SS, Teh BS, Wang JZ et al (2011) Imaging changes after stereotactic body radiation therapy for lung and liver tumors. Expert Rev Anticancer Ther 11:613–620CrossRefPubMed
16.
go back to reference Sanuki-Fujimoto N, Takeda A, Ohashi T et al (2010) CT evaluations of focal liver reactions following stereotactic body radiotherapy for small hepatocellular carcinoma with cirrhosis: relationship between imaging appearance and baseline liver function. Br J Radiol 83:1063–1071CrossRefPubMedPubMedCentral Sanuki-Fujimoto N, Takeda A, Ohashi T et al (2010) CT evaluations of focal liver reactions following stereotactic body radiotherapy for small hepatocellular carcinoma with cirrhosis: relationship between imaging appearance and baseline liver function. Br J Radiol 83:1063–1071CrossRefPubMedPubMedCentral
17.
go back to reference Howells CC, Stinauer MA, Diot Q et al (2012) Normal liver tissue density dose response in patients treated with stereotactic body radiation therapy for liver metastases. Int J Radiat Oncol Biol Phys 84:e441–e446CrossRefPubMed Howells CC, Stinauer MA, Diot Q et al (2012) Normal liver tissue density dose response in patients treated with stereotactic body radiation therapy for liver metastases. Int J Radiat Oncol Biol Phys 84:e441–e446CrossRefPubMed
18.
go back to reference Radhakrishnan K, Bishop J, Jin Z et al (2013) Risk factors associated with liver injury and impact of liver injury on transplantation-related mortality in pediatric recipients of allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 19:912–917CrossRefPubMed Radhakrishnan K, Bishop J, Jin Z et al (2013) Risk factors associated with liver injury and impact of liver injury on transplantation-related mortality in pediatric recipients of allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 19:912–917CrossRefPubMed
19.
go back to reference Seidensticker M, Seidensticker R, Mohnike K et al (2011) Quantitative in vivo assessment of radiation injury of the liver using Gd-EOB-DTPA enhanced MRI: tolerance dose of small liver volumes. Radiat Oncol 6:40CrossRefPubMedPubMedCentral Seidensticker M, Seidensticker R, Mohnike K et al (2011) Quantitative in vivo assessment of radiation injury of the liver using Gd-EOB-DTPA enhanced MRI: tolerance dose of small liver volumes. Radiat Oncol 6:40CrossRefPubMedPubMedCentral
20.
go back to reference Seidensticker M, Burak M, Kalinski T et al (2015) Radiation-induced liver damage: correlation of histopathology with hepatobiliary magnetic resonance imaging, a feasibility study. Cardiovasc Intervent Radiol 38:213–221CrossRefPubMed Seidensticker M, Burak M, Kalinski T et al (2015) Radiation-induced liver damage: correlation of histopathology with hepatobiliary magnetic resonance imaging, a feasibility study. Cardiovasc Intervent Radiol 38:213–221CrossRefPubMed
21.
go back to reference Seidensticker M, Seidensticker R, Damm R et al (2014) Prospective randomized trial of enoxaparin, pentoxifylline and ursodeoxycholic acid for prevention of radiation-induced liver toxicity. PLoS ONE 9:e112731CrossRefPubMedPubMedCentral Seidensticker M, Seidensticker R, Damm R et al (2014) Prospective randomized trial of enoxaparin, pentoxifylline and ursodeoxycholic acid for prevention of radiation-induced liver toxicity. PLoS ONE 9:e112731CrossRefPubMedPubMedCentral
22.
go back to reference Schmid-Tannwald C, Strobl FF, Theisen D et al (2015) Diffusion-weighted MRI before and after robotic radiosurgery (Cyberknife®) in primary and secondary liver malignancies: a pilot study. Technol Cancer Res Treat 14:191–199PubMed Schmid-Tannwald C, Strobl FF, Theisen D et al (2015) Diffusion-weighted MRI before and after robotic radiosurgery (Cyberknife®) in primary and secondary liver malignancies: a pilot study. Technol Cancer Res Treat 14:191–199PubMed
23.
go back to reference Lall C, Bhargava P, Sandrasegaran K et al (2015) Three-dimensional conformal radiation therapy in the liver: MRI findings along a time continuum. J Comput Assist Tomogr 39:356–364PubMed Lall C, Bhargava P, Sandrasegaran K et al (2015) Three-dimensional conformal radiation therapy in the liver: MRI findings along a time continuum. J Comput Assist Tomogr 39:356–364PubMed
24.
go back to reference Yuan Y, Andronesi OC, Bortfeld TR et al (2013) Feasibility study of in vivo MRI based dosimetric verification of proton end-of-range for liver cancer patients. Radiother Oncol 106:378–382CrossRefPubMed Yuan Y, Andronesi OC, Bortfeld TR et al (2013) Feasibility study of in vivo MRI based dosimetric verification of proton end-of-range for liver cancer patients. Radiother Oncol 106:378–382CrossRefPubMed
25.
go back to reference Palma DA, van Sornsen de Koste J, Verbakel WF et al (2011) Lung density changes after stereotactic radiotherapy: a quantitative analysis in 50 patients. Int J Radiat Oncol Biol Phys 81:974–978CrossRefPubMed Palma DA, van Sornsen de Koste J, Verbakel WF et al (2011) Lung density changes after stereotactic radiotherapy: a quantitative analysis in 50 patients. Int J Radiat Oncol Biol Phys 81:974–978CrossRefPubMed
26.
go back to reference Palma DA, van Sornsen de Koste JR, Verbakel WF, Senan S (2011) A new approach to quantifying lung damage after stereotactic body radiation therapy. Acta Oncol 50:509–517CrossRefPubMed Palma DA, van Sornsen de Koste JR, Verbakel WF, Senan S (2011) A new approach to quantifying lung damage after stereotactic body radiation therapy. Acta Oncol 50:509–517CrossRefPubMed
27.
go back to reference Phernambucq EC, Palma DA, Vincent A et al (2011) Time and dose-related changes in radiological lung density after concurrent chemoradiotherapy for lung cancer. Lung Cancer 74:451–456CrossRefPubMed Phernambucq EC, Palma DA, Vincent A et al (2011) Time and dose-related changes in radiological lung density after concurrent chemoradiotherapy for lung cancer. Lung Cancer 74:451–456CrossRefPubMed
28.
go back to reference Dahele M, Palma D, Lagerwaard F et al (2011) Radiological changes after stereotactic radiotherapy for stage I lung cancer. J Thorac Oncol 6:1221–1228CrossRefPubMed Dahele M, Palma D, Lagerwaard F et al (2011) Radiological changes after stereotactic radiotherapy for stage I lung cancer. J Thorac Oncol 6:1221–1228CrossRefPubMed
29.
go back to reference Stieler F, Fleckenstein J, Simeonova A et al (2013) Intensity modulated radiosurgery of brain metastases with flattening filter-free beams. Radiother Oncol 109:448–451CrossRefPubMed Stieler F, Fleckenstein J, Simeonova A et al (2013) Intensity modulated radiosurgery of brain metastases with flattening filter-free beams. Radiother Oncol 109:448–451CrossRefPubMed
30.
go back to reference Boda-Heggemann J, Walter C, Mai S et al (2006) Frameless stereotactic radiosurgery of a solitary liver metastasis using active breathing control and stereotactic ultrasound. Strahlenther Onkol 182:216–221CrossRefPubMed Boda-Heggemann J, Walter C, Mai S et al (2006) Frameless stereotactic radiosurgery of a solitary liver metastasis using active breathing control and stereotactic ultrasound. Strahlenther Onkol 182:216–221CrossRefPubMed
31.
go back to reference Koshani R, Balter JM, Hayman JA et al (2006) Short-term and long-term reproducibility of lung tumor position using active breathing control (ABC). Int J Radiat Oncol Biol Phys 65:1553–1559CrossRefPubMed Koshani R, Balter JM, Hayman JA et al (2006) Short-term and long-term reproducibility of lung tumor position using active breathing control (ABC). Int J Radiat Oncol Biol Phys 65:1553–1559CrossRefPubMed
32.
go back to reference Boda-Heggemann J, Fleckenstein J, Lohr F et al (2011) Multiple breath-hold CBCT for online image guided radiotherapy of lung tumors: simulation with a dynamic phantom and first patient data. Radiother Oncol 98:309–316CrossRefPubMed Boda-Heggemann J, Fleckenstein J, Lohr F et al (2011) Multiple breath-hold CBCT for online image guided radiotherapy of lung tumors: simulation with a dynamic phantom and first patient data. Radiother Oncol 98:309–316CrossRefPubMed
33.
go back to reference Attenberger UI, Morelli J, Budjan J et al (2015) Fifty years of technological innovation: potential and limitations of current technologies in abdominal magnetic resonance imaging and computed tomography. Invest Radiol 50(9):584–593. doi:10.1097/rli.0000000000000173 CrossRefPubMed Attenberger UI, Morelli J, Budjan J et al (2015) Fifty years of technological innovation: potential and limitations of current technologies in abdominal magnetic resonance imaging and computed tomography. Invest Radiol 50(9):584–593. doi:10.​1097/​rli.​0000000000000173​ CrossRefPubMed
34.
go back to reference Morelli JN, Michaely HJ, Meyer MM et al (2013) Comparison of dynamic and liver-specific gadoxetic acid contrast-enhanced MRI versus apparent diffusion coefficients. PLoS ONE 8:e61898CrossRefPubMedPubMedCentral Morelli JN, Michaely HJ, Meyer MM et al (2013) Comparison of dynamic and liver-specific gadoxetic acid contrast-enhanced MRI versus apparent diffusion coefficients. PLoS ONE 8:e61898CrossRefPubMedPubMedCentral
35.
go back to reference Lawson JD, Schreibmann E, Jani AB, Fox T (2007) Quantitative evaluation of a cone-beam computed tomography-planning computed tomography deformable image registration method for adaptive radiation therapy. J Appl Clin Med Phys 8:2432CrossRefPubMed Lawson JD, Schreibmann E, Jani AB, Fox T (2007) Quantitative evaluation of a cone-beam computed tomography-planning computed tomography deformable image registration method for adaptive radiation therapy. J Appl Clin Med Phys 8:2432CrossRefPubMed
36.
37.
go back to reference Joiner M (2009) Fractionation: the linear-quadratic approach. In: Joiner M, van der Kogel A (eds) Basic clinical radiobiology, 4th edn. Hodder Arnold, London, pp 102–119CrossRef Joiner M (2009) Fractionation: the linear-quadratic approach. In: Joiner M, van der Kogel A (eds) Basic clinical radiobiology, 4th edn. Hodder Arnold, London, pp 102–119CrossRef
38.
go back to reference Milano MT, Katz AW, Schell MC et al (2008) Descriptive analysis of oligometastatic lesions treated with curative-intent stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 72:1516–1522CrossRefPubMed Milano MT, Katz AW, Schell MC et al (2008) Descriptive analysis of oligometastatic lesions treated with curative-intent stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 72:1516–1522CrossRefPubMed
39.
go back to reference Macchia G, Deodato F, Cilla S et al (2014) Volumetric intensity modulated arc therapy for stereotactic body radiosurgery in oligometastatic breast and gynecological cancers: feasibility and clinical results. Oncol Rep 32:2237–2243PubMed Macchia G, Deodato F, Cilla S et al (2014) Volumetric intensity modulated arc therapy for stereotactic body radiosurgery in oligometastatic breast and gynecological cancers: feasibility and clinical results. Oncol Rep 32:2237–2243PubMed
40.
go back to reference Jung J, Yoon SM, Kim SY et al (2013) Radiation-induced liver disease after stereotactic body radiotherapy for small hepatocellular carcinoma: clinical and dose-volumetric parameters. Radiat Oncol 8:249CrossRefPubMedPubMedCentral Jung J, Yoon SM, Kim SY et al (2013) Radiation-induced liver disease after stereotactic body radiotherapy for small hepatocellular carcinoma: clinical and dose-volumetric parameters. Radiat Oncol 8:249CrossRefPubMedPubMedCentral
41.
go back to reference Michaely HJ, Morelli JN, Budjan J et al (2013) CAIPIRINHA-Dixon-TWIST (CDT)-volume-interpolated breath-hold examination (VIBE): a new technique for fast time-resolved dynamic 3‑dimensional imaging of the abdomen with high spatial resolution. Invest Radiol 48:590–597CrossRefPubMed Michaely HJ, Morelli JN, Budjan J et al (2013) CAIPIRINHA-Dixon-TWIST (CDT)-volume-interpolated breath-hold examination (VIBE): a new technique for fast time-resolved dynamic 3‑dimensional imaging of the abdomen with high spatial resolution. Invest Radiol 48:590–597CrossRefPubMed
42.
go back to reference Senthi S, Griffioen GH, van Sornsen de Koste JR et al (2013) Comparing rigid and deformable dose registration for high dose thoracic re-irradiation. Radiother Oncol 106:323–326CrossRefPubMed Senthi S, Griffioen GH, van Sornsen de Koste JR et al (2013) Comparing rigid and deformable dose registration for high dose thoracic re-irradiation. Radiother Oncol 106:323–326CrossRefPubMed
43.
go back to reference Kanai T, Kadoya N, Ito K et al (2014) Evaluation of accuracy of B‑spline transformation-based deformable image registration with different parameter settings for thoracic images. J Radiat Res 55:1163–1170CrossRefPubMedPubMedCentral Kanai T, Kadoya N, Ito K et al (2014) Evaluation of accuracy of B‑spline transformation-based deformable image registration with different parameter settings for thoracic images. J Radiat Res 55:1163–1170CrossRefPubMedPubMedCentral
44.
go back to reference Moncayo VM, Martin DR, Sarmiento JM et al (2012) (1)(1)(1)In OctreoScan SPECT-MRI fusion for the detection of a pancreatic insulinoma. Clin Nucl Med 37:e53–e56CrossRefPubMed Moncayo VM, Martin DR, Sarmiento JM et al (2012) (1)(1)(1)In OctreoScan SPECT-MRI fusion for the detection of a pancreatic insulinoma. Clin Nucl Med 37:e53–e56CrossRefPubMed
45.
go back to reference Dong P, Lee P, Ruan D et al (2013) 4pi non-coplanar liver SBRT: a novel delivery technique. Int J Radiat Oncol Biol Phys 85:1360–1366CrossRefPubMed Dong P, Lee P, Ruan D et al (2013) 4pi non-coplanar liver SBRT: a novel delivery technique. Int J Radiat Oncol Biol Phys 85:1360–1366CrossRefPubMed
46.
go back to reference Richter C, Seco J, Hong TS et al (2014) Radiation-induced changes in hepatocyte-specific Gd-EOB-DTPA enhanced MRI: potential mechanism. Med Hypotheses 83:477–481CrossRefPubMed Richter C, Seco J, Hong TS et al (2014) Radiation-induced changes in hepatocyte-specific Gd-EOB-DTPA enhanced MRI: potential mechanism. Med Hypotheses 83:477–481CrossRefPubMed
Metadata
Title
MRI morphologic alterations after liver SBRT
Direct dose correlation with intermodal matching
Authors
Judit Boda-Heggemann, MD PhD
Ulrike Attenberger, MD
Johannes Budjan, MD
Anika Jahnke, PhD
Lennart Jahnke, PhD
Lena Vogel
Anna O. Simeonova-Chergou, MD
Carsten Herskind, PhD
Frederik Wenz, MD
Frank Lohr, MD
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 9/2016
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-016-1013-9

Other articles of this Issue 9/2016

Strahlentherapie und Onkologie 9/2016 Go to the issue