Skip to main content
Top
Published in: Strahlentherapie und Onkologie 4/2014

01-04-2014 | Review article

Hippocampus sparing in whole-brain radiotherapy

A review

Authors: F. Oskan, U. Ganswindt, S.B. Schwarz, F. Manapov, C. Belka, M. Niyazi

Published in: Strahlentherapie und Onkologie | Issue 4/2014

Login to get access

Abstract

Radiation treatment techniques for whole-brain radiation therapy (WBRT) have not changed significantly since development of the procedure. However, the recent development of novel techniques such as intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT) and helical tomotherapy, as well as an increasing body of evidence concerning neural stem cells (NSCs) have altered the conventional WBRT treatment paradigm. In this regard, hippocampus-sparing WBRT is a novel technique that aims to spare critical hippocampus regions without compromising tumour control. Published data on this new technique are limited to planning and feasibility studies; data on patient outcome are still lacking. However, several prospective trials to analyse the feasibility of this technique and to document clinical outcome in terms of reduced neurotoxicity are ongoing.
Literature
1.
go back to reference Aoyama H, Shirato H, Tago M et al (2006) Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295:2483–2491PubMedCrossRef Aoyama H, Shirato H, Tago M et al (2006) Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295:2483–2491PubMedCrossRef
2.
go back to reference Barani IJ, Benedict SH, Lin PS (2007) Neural stem cells: implications for the conventional radiotherapy of central nervous system malignancies. Int J Radiat Oncol Biol Phys 68:324–333PubMedCrossRef Barani IJ, Benedict SH, Lin PS (2007) Neural stem cells: implications for the conventional radiotherapy of central nervous system malignancies. Int J Radiat Oncol Biol Phys 68:324–333PubMedCrossRef
3.
go back to reference Belarbi K, Jopson T, Arellano C et al (2013) CCR2 Deficiency prevents neuronal dysfunction and cognitive impairments induced by cranial irradiation. Cancer Res 73:1201–1210PubMedCentralPubMedCrossRef Belarbi K, Jopson T, Arellano C et al (2013) CCR2 Deficiency prevents neuronal dysfunction and cognitive impairments induced by cranial irradiation. Cancer Res 73:1201–1210PubMedCentralPubMedCrossRef
4.
go back to reference Blomstrand M, Brodin NP, Munck Af Rosenschold P et al (2012) Estimated clinical benefit of protecting neurogenesis in the developing brain during radiation therapy for pediatric medulloblastoma. Neuro Oncol 14:882–889PubMedCentralPubMedCrossRef Blomstrand M, Brodin NP, Munck Af Rosenschold P et al (2012) Estimated clinical benefit of protecting neurogenesis in the developing brain during radiation therapy for pediatric medulloblastoma. Neuro Oncol 14:882–889PubMedCentralPubMedCrossRef
5.
go back to reference Chang EL, Wefel JS, Hess KR et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044PubMedCrossRef Chang EL, Wefel JS, Hess KR et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044PubMedCrossRef
6.
go back to reference Chen XJ, Xiao JP, Li XP et al (2011) Risk factors of distant brain failure for patients with newly diagnosed brain metastases treated with stereotactic radiotherapy alone. Radiat Oncol 6:175PubMedCentralPubMedCrossRef Chen XJ, Xiao JP, Li XP et al (2011) Risk factors of distant brain failure for patients with newly diagnosed brain metastases treated with stereotactic radiotherapy alone. Radiat Oncol 6:175PubMedCentralPubMedCrossRef
7.
go back to reference Cole AM, Scherwath A, Ernst G et al (2013) Self-reported cognitive outcomes in patients with brain metastases before and after radiation therapy. Int J Radiat Oncol Biol Phys 78:705–712CrossRef Cole AM, Scherwath A, Ernst G et al (2013) Self-reported cognitive outcomes in patients with brain metastases before and after radiation therapy. Int J Radiat Oncol Biol Phys 78:705–712CrossRef
8.
go back to reference DeAngelis LM, Mandell LR, Thaler HT et al (1989) The role of postoperative radiotherapy after resection of single brain metastases. Neurosurgery 24:798–805PubMedCrossRef DeAngelis LM, Mandell LR, Thaler HT et al (1989) The role of postoperative radiotherapy after resection of single brain metastases. Neurosurgery 24:798–805PubMedCrossRef
9.
go back to reference Franco P, Numico G, Migliaccio F et al (2012) Head and neck region consolidation radiotherapy and prophylactic cranial irradiation with hippocampal avoidance delivered with helical tomotherapy after induction chemotherapy for non-sinonasal neuroendocrine carcinoma of the upper airways. Radiat Oncol 7:21PubMedCentralPubMedCrossRef Franco P, Numico G, Migliaccio F et al (2012) Head and neck region consolidation radiotherapy and prophylactic cranial irradiation with hippocampal avoidance delivered with helical tomotherapy after induction chemotherapy for non-sinonasal neuroendocrine carcinoma of the upper airways. Radiat Oncol 7:21PubMedCentralPubMedCrossRef
10.
go back to reference Fuss M, Poljanc K, Miller DW et al (200) Normal tissue complication probability (NTCP) as a Means to compare proton and photon plans and evaluation appropriateness of calculated values. Int J Cancer (Radiat Oncol Invest) 90:351–358 Fuss M, Poljanc K, Miller DW et al (200) Normal tissue complication probability (NTCP) as a Means to compare proton and photon plans and evaluation appropriateness of calculated values. Int J Cancer (Radiat Oncol Invest) 90:351–358
11.
go back to reference Ghia A, Tome WA, Thomas S et al (2007) Distribution of brain metastases in relation to the hippocampus: implications for neurocognitive functional preservation. Int J Radiat Oncol Biol Phys 68:971–977PubMedCrossRef Ghia A, Tome WA, Thomas S et al (2007) Distribution of brain metastases in relation to the hippocampus: implications for neurocognitive functional preservation. Int J Radiat Oncol Biol Phys 68:971–977PubMedCrossRef
12.
go back to reference Gondi V, Hermann BP, Mehta MP et al (2013) Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys 85:348–354PubMedCrossRef Gondi V, Hermann BP, Mehta MP et al (2013) Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys 85:348–354PubMedCrossRef
13.
go back to reference Gondi V, Tolakanahalli R, Mehta MP et al (2010) Hippocampal-sparing whole-brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 78:1244–1252PubMedCentralPubMedCrossRef Gondi V, Tolakanahalli R, Mehta MP et al (2010) Hippocampal-sparing whole-brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 78:1244–1252PubMedCentralPubMedCrossRef
14.
go back to reference Gondi V, Tome WA, Marsh J et al (2010) Estimated risk of perihippocampal disease progression after hippocampal avoidance during whole-brain radiotherapy: safety profile for RTOG 0933. Radiother Oncol 95:327–331PubMedCentralPubMedCrossRef Gondi V, Tome WA, Marsh J et al (2010) Estimated risk of perihippocampal disease progression after hippocampal avoidance during whole-brain radiotherapy: safety profile for RTOG 0933. Radiother Oncol 95:327–331PubMedCentralPubMedCrossRef
16.
go back to reference Greene-Schloesser D, Moore E, Robbins ME (2013) Molecular pathways: radiation-induced cognitive impairment. Clin Cancer Res 19:2294PubMedCrossRef Greene-Schloesser D, Moore E, Robbins ME (2013) Molecular pathways: radiation-induced cognitive impairment. Clin Cancer Res 19:2294PubMedCrossRef
17.
go back to reference Gutierrez AN, Westerly DC, Tome WA et al (2007) Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys 69:589–597PubMedCentralPubMedCrossRef Gutierrez AN, Westerly DC, Tome WA et al (2007) Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys 69:589–597PubMedCentralPubMedCrossRef
18.
go back to reference Hsu F, Carolan H, Nichol A et al (2010) Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for 1–3 brain metastases: a feasibility study using volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 76:1480–1485PubMedCrossRef Hsu F, Carolan H, Nichol A et al (2010) Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for 1–3 brain metastases: a feasibility study using volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 76:1480–1485PubMedCrossRef
19.
go back to reference Kirby N, Chuang C, Pouliot J et al (2011) Physics strategies for sparing neural stem cells during whole-brain radiation treatments. Med Phys 38:5338–5344PubMedCrossRef Kirby N, Chuang C, Pouliot J et al (2011) Physics strategies for sparing neural stem cells during whole-brain radiation treatments. Med Phys 38:5338–5344PubMedCrossRef
20.
go back to reference Kocher M, Soffietti R, Abacioglu U et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol 29:134–141PubMedCentralPubMedCrossRef Kocher M, Soffietti R, Abacioglu U et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol 29:134–141PubMedCentralPubMedCrossRef
21.
go back to reference Kress MA, Ramakrishna N, Makgoeng SB et al (2012) Physician self-reported treatment of brain metastases according to patients’ clinical and demographic factors and physician practice setting. Radiat Oncol 7:188PubMedCentralPubMedCrossRef Kress MA, Ramakrishna N, Makgoeng SB et al (2012) Physician self-reported treatment of brain metastases according to patients’ clinical and demographic factors and physician practice setting. Radiat Oncol 7:188PubMedCentralPubMedCrossRef
22.
go back to reference Marsh JC, Gielda BT, Herskovic AM (2010) Cognitive Sparing during the administration of whole brain radiotherapy and prophylactic cranial irradiation: current concepts and approaches. J Oncol 2010:198208PubMedCentralPubMedCrossRef Marsh JC, Gielda BT, Herskovic AM (2010) Cognitive Sparing during the administration of whole brain radiotherapy and prophylactic cranial irradiation: current concepts and approaches. J Oncol 2010:198208PubMedCentralPubMedCrossRef
23.
go back to reference Marsh JC, Herskovic AM, Gielda BT et al (2010) Intracranial metastatic disease spares the limibic circuit: a review of 697 metastatic lesions in 107 patients. Int J Radiat Oncol Biol Phys 76:504–512PubMedCrossRef Marsh JC, Herskovic AM, Gielda BT et al (2010) Intracranial metastatic disease spares the limibic circuit: a review of 697 metastatic lesions in 107 patients. Int J Radiat Oncol Biol Phys 76:504–512PubMedCrossRef
24.
go back to reference Patchell RA, Tibbs PA, Regine WF et al (1998) Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280:1485–1489PubMedCrossRef Patchell RA, Tibbs PA, Regine WF et al (1998) Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280:1485–1489PubMedCrossRef
25.
go back to reference Prokic V, Wiedenmann N, Fels F et al (2013) Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: a planning study on treatment concepts. Int J Radiat Oncol Biol Phys 85:264–270PubMedCrossRef Prokic V, Wiedenmann N, Fels F et al (2013) Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: a planning study on treatment concepts. Int J Radiat Oncol Biol Phys 85:264–270PubMedCrossRef
26.
go back to reference Raber J, Rola R, LeFevour A et al (2004) Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 162:39–47PubMedCrossRef Raber J, Rola R, LeFevour A et al (2004) Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 162:39–47PubMedCrossRef
27.
go back to reference Rades D, Kueter JD, Gliemroth J et al (2012) Resection plus whole-brain irradiation versus resection plus whole-brain irradiation plus boost for the treatment of single brain metastasis. Strahlenther Onkol 188:143–147PubMedCrossRef Rades D, Kueter JD, Gliemroth J et al (2012) Resection plus whole-brain irradiation versus resection plus whole-brain irradiation plus boost for the treatment of single brain metastasis. Strahlenther Onkol 188:143–147PubMedCrossRef
28.
go back to reference Rades D, Schild SE (2012) Do patients with a limited number of brain metastases need whole-brain radiotherapy in addition to radiosurgery? Strahlenther Onkol 188:702–706PubMedCrossRef Rades D, Schild SE (2012) Do patients with a limited number of brain metastases need whole-brain radiotherapy in addition to radiosurgery? Strahlenther Onkol 188:702–706PubMedCrossRef
29.
go back to reference Redmond KJ, Mahone EM, Terezakis S et al (2013) Association between radiation dose to neuronal progenitor cell niches and temporal lobes and performance on neuropsychological testing in children: a prospective study. Neuro Oncol 15:360–369PubMedCentralPubMedCrossRef Redmond KJ, Mahone EM, Terezakis S et al (2013) Association between radiation dose to neuronal progenitor cell niches and temporal lobes and performance on neuropsychological testing in children: a prospective study. Neuro Oncol 15:360–369PubMedCentralPubMedCrossRef
30.
go back to reference Scoccianti S, Detti B, Cipressi S et al (2012) Changes in neurocognitive functioning and quality of life in adult patients with brain tumors treated with radiotherapy. J Neurooncol 108:291–308PubMedCrossRef Scoccianti S, Detti B, Cipressi S et al (2012) Changes in neurocognitive functioning and quality of life in adult patients with brain tumors treated with radiotherapy. J Neurooncol 108:291–308PubMedCrossRef
31.
go back to reference Scoccianti S, Ricardi U (2012) Treatment of brain metastases: review of phase III randomised controlled trails. Radiother Oncol 102:168–179PubMedCrossRef Scoccianti S, Ricardi U (2012) Treatment of brain metastases: review of phase III randomised controlled trails. Radiother Oncol 102:168–179PubMedCrossRef
32.
go back to reference Steinmann D, Vordermark D, Geinitz H et al (2013) Proxy assessment of patients before and after radiotherapy for brain metastases. Results of a prospective study using the DEGRO brain module. Strahlenther Onkol 189:47–53PubMedCrossRef Steinmann D, Vordermark D, Geinitz H et al (2013) Proxy assessment of patients before and after radiotherapy for brain metastases. Results of a prospective study using the DEGRO brain module. Strahlenther Onkol 189:47–53PubMedCrossRef
33.
go back to reference Sun A, Bae K, Gore EM et al (2011) Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer: neurocognitive and quality-of-life analysis. J Clin Oncol 29:279–286PubMedCentralPubMedCrossRef Sun A, Bae K, Gore EM et al (2011) Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer: neurocognitive and quality-of-life analysis. J Clin Oncol 29:279–286PubMedCentralPubMedCrossRef
34.
go back to reference Tallet AV, Azria D, Barlesi F et al (2012) Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol 7:77PubMedCentralPubMedCrossRef Tallet AV, Azria D, Barlesi F et al (2012) Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol 7:77PubMedCentralPubMedCrossRef
35.
go back to reference Tarnawski R, Michalecki L, Blamek S et al (2011) Feasibility of reducing the irradiation dose in regions of active neurogenesis for prophylactic cranial irradiation in patients with small-cell lung cancer. Neoplasma 58:507–515PubMedCrossRef Tarnawski R, Michalecki L, Blamek S et al (2011) Feasibility of reducing the irradiation dose in regions of active neurogenesis for prophylactic cranial irradiation in patients with small-cell lung cancer. Neoplasma 58:507–515PubMedCrossRef
36.
go back to reference Villa S, Weber DC, Moretones C et al (2011) Validation of the new Graded Prognostic Assessment scale for brain metastases: a multicenter prospective study. Radiat Oncol 6:23PubMedCentralPubMedCrossRef Villa S, Weber DC, Moretones C et al (2011) Validation of the new Graded Prognostic Assessment scale for brain metastases: a multicenter prospective study. Radiat Oncol 6:23PubMedCentralPubMedCrossRef
37.
go back to reference Wan JF, Zhang SJ, Wang L et al (2013) Implications for preserving neural stem cells in whole brain radiotherapy and prophylactic cranial irradiation: a review of 2270 metastases in 488 patients. J Radiat Res 45:285–291CrossRef Wan JF, Zhang SJ, Wang L et al (2013) Implications for preserving neural stem cells in whole brain radiotherapy and prophylactic cranial irradiation: a review of 2270 metastases in 488 patients. J Radiat Res 45:285–291CrossRef
Metadata
Title
Hippocampus sparing in whole-brain radiotherapy
A review
Authors
F. Oskan
U. Ganswindt
S.B. Schwarz
F. Manapov
C. Belka
M. Niyazi
Publication date
01-04-2014
Publisher
Springer-Verlag
Published in
Strahlentherapie und Onkologie / Issue 4/2014
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-013-0518-8

Other articles of this Issue 4/2014

Strahlentherapie und Onkologie 4/2014 Go to the issue

Mitteilungen der Fachgesellschaften

Mitteilungen der Fachgesellschaften