Skip to main content
Top
Published in: Strahlentherapie und Onkologie 7/2013

01-07-2013 | Original article

Dosimetric properties and commissioning of cone-beam CT image beam line with a carbon target

Authors: Y. Dzierma, F.G. Nuesken, N.P. Licht, C. Ruebe

Published in: Strahlentherapie und Onkologie | Issue 7/2013

Login to get access

Abstract

Background and purpose

Accurate patient positioning before radiotherapy is often verified using advanced imaging techniques such as cone-beam computed tomography (CBCT). Even for dedicated imaging beam lines, the applied dose is not necessarily negligible with respect to the treatment dose and should be considered in the treatment plan.

Materials and methods

This study presents measurements of the beam properties of the Siemens kView (Siemens AG, Munich, Germany) image beam line (IBL) and the commissioning in the Philips Pinnacle3 treatment planning system (TPS; Philips, Amsterdam, Netherlands).

Results

The percent depth dose curve reaches its maximum at a depth of 10 mm, with a surface dose of 44 %. The IBL operates in flattening filter-free mode, showing the characteristic dose falloff from the central axis. Stability over several days to months is within less than 2 % dose deviation or 1 mm distance-to-agreement. Modelling of the IBL beam line was performed using the Pinnacle3 automatic modelling routine, with absolute dosimetric verification and film measurements of the fluence distribution.

Conclusion

After commissioning of the IBL beam model, the dose from the imaging IBL CBCT can be calculated. Even if the absolute dose deposited is small, repeated imaging doses may sum up to significant amounts and can shift the position of the dose maximum by several centimetres.
Literature
1.
go back to reference Alaei P, Ding G, Guan H (2010) Inclusion of the dose from kilovoltage cone beam CT in therapy treatment plans. Med Phys 37(1):244–248PubMedCrossRef Alaei P, Ding G, Guan H (2010) Inclusion of the dose from kilovoltage cone beam CT in therapy treatment plans. Med Phys 37(1):244–248PubMedCrossRef
2.
go back to reference Amer A, Marchant T, Sykes J et al (2007) Imaging doses from the elekta synergy X-ray cone beam CT system. BJR 80:476–482PubMedCrossRef Amer A, Marchant T, Sykes J et al (2007) Imaging doses from the elekta synergy X-ray cone beam CT system. BJR 80:476–482PubMedCrossRef
3.
go back to reference Beltran C, Lukose R, Gangadharan B et al (2009) Image quality & dosimetric property of an investigational imaging beam line MV-CBCT. J Appl Clin Med Phys 10(3):37–48CrossRef Beltran C, Lukose R, Gangadharan B et al (2009) Image quality & dosimetric property of an investigational imaging beam line MV-CBCT. J Appl Clin Med Phys 10(3):37–48CrossRef
4.
go back to reference Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV Cone-Beam CT-Based IGRT. Strahlenther Onkol 187(5):284–291PubMedCrossRef Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV Cone-Beam CT-Based IGRT. Strahlenther Onkol 187(5):284–291PubMedCrossRef
5.
go back to reference Breitbach EK, Maltz JS, Gangadharan B et al (2011) Image quality improvement in megavoltage cone-beam CT using an imaging beam line and a sintered pixelated array system. Med Phys 38(11):5969–5979PubMedCrossRef Breitbach EK, Maltz JS, Gangadharan B et al (2011) Image quality improvement in megavoltage cone-beam CT using an imaging beam line and a sintered pixelated array system. Med Phys 38(11):5969–5979PubMedCrossRef
6.
go back to reference Connell T, Robar JL (2010) Low-Z target optimization for spatial resolution improvement in megavoltage imaging. Med Phys 37(1):124–131PubMedCrossRef Connell T, Robar JL (2010) Low-Z target optimization for spatial resolution improvement in megavoltage imaging. Med Phys 37(1):124–131PubMedCrossRef
7.
go back to reference Ding GX, Coffey CW (2009) Radiation Dose from kilovoltage cone beam computed tomography in and image-guided radiotherapy procedure. Int J Radiat Oncol Biol Phys 73(2):610–617PubMedCrossRef Ding GX, Coffey CW (2009) Radiation Dose from kilovoltage cone beam computed tomography in and image-guided radiotherapy procedure. Int J Radiat Oncol Biol Phys 73(2):610–617PubMedCrossRef
8.
go back to reference Dzierma Y, Licht N, Nuesken F, Ruebe C (2012) Beam properties and stability of a flattening-filter free 7 MV beam—an overview. Med Phys 39(5):2595–2602PubMedCrossRef Dzierma Y, Licht N, Nuesken F, Ruebe C (2012) Beam properties and stability of a flattening-filter free 7 MV beam—an overview. Med Phys 39(5):2595–2602PubMedCrossRef
9.
go back to reference Faddegon BA, Wu V, Pouliot J et al (2008) Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target. Med Phys 35(12):5777–5786PubMedCrossRef Faddegon BA, Wu V, Pouliot J et al (2008) Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target. Med Phys 35(12):5777–5786PubMedCrossRef
10.
go back to reference Faddegon BA, Aubin M, Bani-Hashemi A et al (2010) Comparison of patient megavoltage cone beam CT images acquired with an unflattened beam from a carbon target and a flattened treatment beam. Med Phys 37(4):1737–1741PubMedCrossRef Faddegon BA, Aubin M, Bani-Hashemi A et al (2010) Comparison of patient megavoltage cone beam CT images acquired with an unflattened beam from a carbon target and a flattened treatment beam. Med Phys 37(4):1737–1741PubMedCrossRef
11.
go back to reference Flynn RT, Hartmann J, Bani-Hashemi A et al (2009) Dosimetric characterization and application of an imaging beam line with a carbon electron target for megavoltage cone beam computed tomography. Med Phys 36(6):2181–2192PubMedCrossRef Flynn RT, Hartmann J, Bani-Hashemi A et al (2009) Dosimetric characterization and application of an imaging beam line with a carbon electron target for megavoltage cone beam computed tomography. Med Phys 36(6):2181–2192PubMedCrossRef
12.
go back to reference Gayou O, Parda DS, Johnson M, Miften M (2007) Patient dose and image quality from mega-voltage cone beam computed tomography imaging. Med Phys 34(2):499–506PubMedCrossRef Gayou O, Parda DS, Johnson M, Miften M (2007) Patient dose and image quality from mega-voltage cone beam computed tomography imaging. Med Phys 34(2):499–506PubMedCrossRef
13.
go back to reference Isambert A, Ferreira IH, Bossi A et al (2009) Dose délivrée au patient lors de l’acquisition d’images par tomographie conique de haute énergie. Cancer/Radiothérapie 13:358–364 (article in French) Isambert A, Ferreira IH, Bossi A et al (2009) Dose délivrée au patient lors de l’acquisition d’images par tomographie conique de haute énergie. Cancer/Radiothérapie 13:358–364 (article in French)
14.
go back to reference Islam MK, Purdie TG, Norrlinger BD et al (2006) Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. Med Phys 33(6):1573–1782PubMedCrossRef Islam MK, Purdie TG, Norrlinger BD et al (2006) Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. Med Phys 33(6):1573–1782PubMedCrossRef
15.
go back to reference Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. IJROBP 53(5):1337–1349 Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. IJROBP 53(5):1337–1349
16.
go back to reference Jaffray DA, Drake DG, Moreau M et al (1999) A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of the bone and soft-tissue targets. IJROBP 45(3):773–789 Jaffray DA, Drake DG, Moreau M et al (1999) A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of the bone and soft-tissue targets. IJROBP 45(3):773–789
17.
go back to reference Miften M, Gayou O, Reiz B et al (2007) IMRT planning and delivery incorporating daily dose from mega-voltage cone-beam computed tomography imaging. Med Phys 34(10):3760–3767PubMedCrossRef Miften M, Gayou O, Reiz B et al (2007) IMRT planning and delivery incorporating daily dose from mega-voltage cone-beam computed tomography imaging. Med Phys 34(10):3760–3767PubMedCrossRef
18.
go back to reference Mohan R, Chui C (1985) Energy and angular distributions of photons from medical linear accelerators. Med Phys 12(5):592–597PubMedCrossRef Mohan R, Chui C (1985) Energy and angular distributions of photons from medical linear accelerators. Med Phys 12(5):592–597PubMedCrossRef
19.
go back to reference Morin O, Chen J, Aubin M et al (2007) Dose calculation using megavoltage cone-beam CT. Int J Radiat Oncol Biol Phys 67(4):1201–1210PubMedCrossRef Morin O, Chen J, Aubin M et al (2007) Dose calculation using megavoltage cone-beam CT. Int J Radiat Oncol Biol Phys 67(4):1201–1210PubMedCrossRef
20.
go back to reference Morin O, Gillis A, Descovich M et al (2007) Patient dose considerations for routine megavoltage cone-beam CT imaging. Med Phys 34(5):1819–1827PubMedCrossRef Morin O, Gillis A, Descovich M et al (2007) Patient dose considerations for routine megavoltage cone-beam CT imaging. Med Phys 34(5):1819–1827PubMedCrossRef
21.
go back to reference Ostapiak OZ, O’Brien PF, Faddegon BA (1998) Megavoltage imaging with low Z targets: implementation and characterization of an investigational system. Med Phys 25(10):1910–1918PubMedCrossRef Ostapiak OZ, O’Brien PF, Faddegon BA (1998) Megavoltage imaging with low Z targets: implementation and characterization of an investigational system. Med Phys 25(10):1910–1918PubMedCrossRef
22.
go back to reference Robar JL, Connell T, Huang W, Kelly RG (2009) Megavoltage planar and cone-beam imaging with low-Z targets: dependence of image quality improvement on beam energy and patient separation. Med Phys 36(9):3955–3963PubMedCrossRef Robar JL, Connell T, Huang W, Kelly RG (2009) Megavoltage planar and cone-beam imaging with low-Z targets: dependence of image quality improvement on beam energy and patient separation. Med Phys 36(9):3955–3963PubMedCrossRef
23.
go back to reference Roberts DA, Hansen VN, Niven AC et al (2008) A low Z linac and flat panel imager: comparison with the conventional imaging approach. Phys Med Biol 53:6305–6319PubMedCrossRef Roberts DA, Hansen VN, Niven AC et al (2008) A low Z linac and flat panel imager: comparison with the conventional imaging approach. Phys Med Biol 53:6305–6319PubMedCrossRef
24.
go back to reference Roberts DA, Hansen VN, Thompson MG et al (2011) Comparative study of a low-Z cone-beamk computed tomography system. Phys Med Biol 56:4453–4464PubMedCrossRef Roberts DA, Hansen VN, Thompson MG et al (2011) Comparative study of a low-Z cone-beamk computed tomography system. Phys Med Biol 56:4453–4464PubMedCrossRef
25.
go back to reference Spezi E, Downes P, Jarvis R et al (2011) Patient-specific three-dimensional concomitant dose from cone beam computed tomography exposure in image-guided radiotherapy. IJROBP 83(1):419–426 Spezi E, Downes P, Jarvis R et al (2011) Patient-specific three-dimensional concomitant dose from cone beam computed tomography exposure in image-guided radiotherapy. IJROBP 83(1):419–426
26.
go back to reference Steil V, Röhner F, Schneider F et al (2012) Aktuelle Anforderungen an das Bildmanagement in der Strahlentherapie. Strahlenther Onkol 188(5):499–506PubMedCrossRef Steil V, Röhner F, Schneider F et al (2012) Aktuelle Anforderungen an das Bildmanagement in der Strahlentherapie. Strahlenther Onkol 188(5):499–506PubMedCrossRef
27.
go back to reference Zabel-du Bois A, Nill S, Ulrich S et al (2012) Dosimetric integration of daily mega-voltage cone-beam CT for image-guided intensity-modulated radiotherapy. Strahlenther Onkol 188(2):120–126CrossRef Zabel-du Bois A, Nill S, Ulrich S et al (2012) Dosimetric integration of daily mega-voltage cone-beam CT for image-guided intensity-modulated radiotherapy. Strahlenther Onkol 188(2):120–126CrossRef
Metadata
Title
Dosimetric properties and commissioning of cone-beam CT image beam line with a carbon target
Authors
Y. Dzierma
F.G. Nuesken
N.P. Licht
C. Ruebe
Publication date
01-07-2013
Publisher
Springer-Verlag
Published in
Strahlentherapie und Onkologie / Issue 7/2013
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-013-0330-5

Other articles of this Issue 7/2013

Strahlentherapie und Onkologie 7/2013 Go to the issue