Skip to main content
Top
Published in: Strahlentherapie und Onkologie 8/2012

01-08-2012 | Original article

Clinical relevance of different dose calculation strategies for mediastinal IMRT in Hodgkin’s disease

Authors: J. Koeck, Y. Abo-Madyan, H.T. Eich, F. Stieler, J. Fleckenstein, J. Kriz, R.-P. Mueller, F. Wenz, F. Lohr

Published in: Strahlentherapie und Onkologie | Issue 8/2012

Login to get access

Abstract

Background and purpose

Conventional algorithms show uncertainties in dose calculation already for three-dimensional conformal radiotherapy (3D-CRT). Intensity-modulated radiotherapy (IMRT) might even increase these. We wanted to assess differences in dose distribution for pencil beam (PB), collapsed cone (CC), and Monte Carlo (MC) algorithm for both 3D-CRT and IMRT in patients with mediastinal Hodgkin lymphoma.

Patients and methods

Based on 20 computed tomograph (CT) datasets of patients with mediastinal Hodgkin lymphoma, we created treatment plans according to the guidelines of the German Hodgkin Study Group (GHSG) with PB and CC algorithm for 3D-CRT and with PB and MC algorithm for IMRT. Doses were compared for planning target volume (PTV) and organs at risk.

Results

For 3D-CRT, PB overestimated PTV95 and V20 of the lung by 6.9% and 3.3% and underestimated V10 of the lung by 5.8%, compared to the CC algorithm. For IMRT, PB overestimated PTV95, V20 of the lung, V25 of the heart and V10 of the female left/right breast by 8.1%, 25.8%, 14.0% and 43.6%/189.1%, and underestimated V10 of the lung, V4 of the heart and V4 of the female left/right breast by 6.3%, 6.8% and 23.2%/15.6%, compared to MC.

Conclusion

The PB algorithm underestimates low doses to the organs at risk and overestimates dose to PTV and high doses to the organs at risk. For 3D-CRT, a well-modeled PB algorithm is clinically acceptable; for IMRT planning, however, an advanced algorithm such as CC or MC should be used at least for part of the plan optimization.
Literature
1.
go back to reference Gagliardi G, Constine LS, Moiseenko V et al (2010) Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys 76:77–85CrossRef Gagliardi G, Constine LS, Moiseenko V et al (2010) Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys 76:77–85CrossRef
2.
go back to reference Darby SC, Cutter DJ, Boerma M et al (2010) Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys 76:656–665PubMedCrossRef Darby SC, Cutter DJ, Boerma M et al (2010) Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys 76:656–665PubMedCrossRef
3.
go back to reference Ng AK, Kenney LB, Gilbert ES, Travis LB (2010) Secondary malignancies across the age spectrum. Semin Radiat Oncol 20:67–78PubMedCrossRef Ng AK, Kenney LB, Gilbert ES, Travis LB (2010) Secondary malignancies across the age spectrum. Semin Radiat Oncol 20:67–78PubMedCrossRef
4.
go back to reference Nilsson G, Holmberg L, Garmo H et al (2012) Distribution of coronary artery stenosis after radiation for breast cancer. J Clin Oncol 30:380–386PubMedCrossRef Nilsson G, Holmberg L, Garmo H et al (2012) Distribution of coronary artery stenosis after radiation for breast cancer. J Clin Oncol 30:380–386PubMedCrossRef
5.
go back to reference Adams MJ, Lipsitz SR, Colan SD et al (2004) Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J Clin Oncol 22:3139–3148PubMedCrossRef Adams MJ, Lipsitz SR, Colan SD et al (2004) Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J Clin Oncol 22:3139–3148PubMedCrossRef
6.
go back to reference Goodman KA, Toner S, Hunt M et al (2005) Intensity-modulated radiotherapy for lymphoma involving the mediastinum. Int J Radiat Oncol Biol Phys 62:198–206PubMedCrossRef Goodman KA, Toner S, Hunt M et al (2005) Intensity-modulated radiotherapy for lymphoma involving the mediastinum. Int J Radiat Oncol Biol Phys 62:198–206PubMedCrossRef
7.
go back to reference Girinsky T, Pichenot C, Beaudre A et al (2006) Is intensity-modulated radiotherapy better than conventional radiation treatment and three-dimensional conformal radiotherapy for mediastinal masses in patients with Hodgkin’s disease, and is there a role for beam orientation optimization and dose constraints assigned to virtual volumes? Int J Radiat Oncol Biol Phys 64:218–226PubMedCrossRef Girinsky T, Pichenot C, Beaudre A et al (2006) Is intensity-modulated radiotherapy better than conventional radiation treatment and three-dimensional conformal radiotherapy for mediastinal masses in patients with Hodgkin’s disease, and is there a role for beam orientation optimization and dose constraints assigned to virtual volumes? Int J Radiat Oncol Biol Phys 64:218–226PubMedCrossRef
8.
go back to reference Koeck J, Abo-Madyan Y, Lohr F et al (2012) Radiotherapy for early mediastinal hodgkin lymphoma according to the German Hodgkin Study Group (GHSG): the roles of intensity-modulated radiotherapy and involved-node radiotherapy. Int J Radiat Oncol Biol Phys 83:268–276PubMedCrossRef Koeck J, Abo-Madyan Y, Lohr F et al (2012) Radiotherapy for early mediastinal hodgkin lymphoma according to the German Hodgkin Study Group (GHSG): the roles of intensity-modulated radiotherapy and involved-node radiotherapy. Int J Radiat Oncol Biol Phys 83:268–276PubMedCrossRef
9.
go back to reference Oshiro Y, Aruga T, Tsuboi K et al (2010) Stereotactic body radiotherapy for lung tumors at the pulmonary hilum. Strahlenther Onkol 186:274–279PubMedCrossRef Oshiro Y, Aruga T, Tsuboi K et al (2010) Stereotactic body radiotherapy for lung tumors at the pulmonary hilum. Strahlenther Onkol 186:274–279PubMedCrossRef
10.
go back to reference Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV cone-beam CT-based IGRT. Strahlenther Onkol 187:284–291PubMedCrossRef Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV cone-beam CT-based IGRT. Strahlenther Onkol 187:284–291PubMedCrossRef
11.
go back to reference Krieger T, Sauer OA (2005) Monte Carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol 50:859–868PubMedCrossRef Krieger T, Sauer OA (2005) Monte Carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol 50:859–868PubMedCrossRef
12.
go back to reference Seco J, Adams L, Partridge M et al (2005) Evaluation of pencil beam, collapsed cone and Monte Carlo IMRT dose calculation algorithms for dual target sites. Radiother Oncol 76:18CrossRef Seco J, Adams L, Partridge M et al (2005) Evaluation of pencil beam, collapsed cone and Monte Carlo IMRT dose calculation algorithms for dual target sites. Radiother Oncol 76:18CrossRef
13.
go back to reference Dobler B, Walter C, Knopf A et al (2006) Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms. Radiat Oncol 1:45PubMedCrossRef Dobler B, Walter C, Knopf A et al (2006) Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms. Radiat Oncol 1:45PubMedCrossRef
14.
go back to reference Keall PJ, Siebers JV, Arnfield M et al (2001) Monte Carlo dose calculations for dynamic IMRT treatments. Phys Med Biol 46:929–941PubMedCrossRef Keall PJ, Siebers JV, Arnfield M et al (2001) Monte Carlo dose calculations for dynamic IMRT treatments. Phys Med Biol 46:929–941PubMedCrossRef
15.
go back to reference Vanderstraeten B, Reynaert N, Paelinck L et al (2006) Accuracy of patient dose calculation for lung IMRT: a comparison of Monte Carlo, convolution/superposition, and pencil beam computations. Med Phys 33:3149–3158PubMedCrossRef Vanderstraeten B, Reynaert N, Paelinck L et al (2006) Accuracy of patient dose calculation for lung IMRT: a comparison of Monte Carlo, convolution/superposition, and pencil beam computations. Med Phys 33:3149–3158PubMedCrossRef
16.
go back to reference Sharma S, Ott J, Williams J, Dickow D (2011) Dose calculation accuracy of the Monte Carlo algorithm for cyberknife compared with other commercially available dose calculation algorithms. Med Dosim 36:347–350PubMedCrossRef Sharma S, Ott J, Williams J, Dickow D (2011) Dose calculation accuracy of the Monte Carlo algorithm for cyberknife compared with other commercially available dose calculation algorithms. Med Dosim 36:347–350PubMedCrossRef
17.
go back to reference Polednik M, Abo Madyan Y, Schneider F et al (2007) Evaluation of calculation algorithms implemented in different commercial planning systems on an anthropomorphic breast phantom using film dosimetry. Strahlenther Onkol 183:667–672PubMedCrossRef Polednik M, Abo Madyan Y, Schneider F et al (2007) Evaluation of calculation algorithms implemented in different commercial planning systems on an anthropomorphic breast phantom using film dosimetry. Strahlenther Onkol 183:667–672PubMedCrossRef
18.
go back to reference Gray A, Oliver LD, Johnston PN (2009) The accuracy of the pencil beam convolution and anisotropic analytical algorithms in predicting the dose effects due to attenuation from immobilization devices and large air gaps. Med Phys 36:3181–3191PubMedCrossRef Gray A, Oliver LD, Johnston PN (2009) The accuracy of the pencil beam convolution and anisotropic analytical algorithms in predicting the dose effects due to attenuation from immobilization devices and large air gaps. Med Phys 36:3181–3191PubMedCrossRef
19.
go back to reference Sikora M, Muzik J, Sohn M et al (2009) Monte Carlo vs. pencil beam based optimization of stereotactic lung IMRT. Radiat Oncol 4:64PubMedCrossRef Sikora M, Muzik J, Sohn M et al (2009) Monte Carlo vs. pencil beam based optimization of stereotactic lung IMRT. Radiat Oncol 4:64PubMedCrossRef
20.
go back to reference Fotina I, Kragl G, Kroupa B et al (2011) Clinical comparison of dose calculation using the enhanced collapsed cone algorithm vs. a new Monte Carlo algorithm. Strahlenther Onkol 187:433–441PubMedCrossRef Fotina I, Kragl G, Kroupa B et al (2011) Clinical comparison of dose calculation using the enhanced collapsed cone algorithm vs. a new Monte Carlo algorithm. Strahlenther Onkol 187:433–441PubMedCrossRef
21.
go back to reference Brualla L, Palanco-Zamora R, Steuhl KP et al (2011) Monte Carlo simulations applied to conjunctival lymphoma radiotherapy treatment. Strahlenther Onkol 187:492–498PubMedCrossRef Brualla L, Palanco-Zamora R, Steuhl KP et al (2011) Monte Carlo simulations applied to conjunctival lymphoma radiotherapy treatment. Strahlenther Onkol 187:492–498PubMedCrossRef
22.
go back to reference Irvine C, Morgan A, Crellin A et al (2004) The clinical implications of the collapsed cone planning algorithm. Clin Oncol (R Coll Radiol) 16:148–154 Irvine C, Morgan A, Crellin A et al (2004) The clinical implications of the collapsed cone planning algorithm. Clin Oncol (R Coll Radiol) 16:148–154
23.
go back to reference Chen H, Lohr F, Fritz P et al (2010) Stereotactic, single-dose irradiation of lung tumors: a comparison of absolute dose and dose distribution between pencil beam and Monte Carlo algorithms based on actual patient CT scans. Int J Radiat Oncol Biol Phys 78:955–963PubMedCrossRef Chen H, Lohr F, Fritz P et al (2010) Stereotactic, single-dose irradiation of lung tumors: a comparison of absolute dose and dose distribution between pencil beam and Monte Carlo algorithms based on actual patient CT scans. Int J Radiat Oncol Biol Phys 78:955–963PubMedCrossRef
24.
go back to reference Koelbl O, Krieger T, Haedinger U et al (2004) Influence of calculation algorithm on dose distribution in irradiation of non-small cell lung cancer (NSCLC) collapsed cone versus pencil beam. Strahlenther Onkol 180:783–788PubMedCrossRef Koelbl O, Krieger T, Haedinger U et al (2004) Influence of calculation algorithm on dose distribution in irradiation of non-small cell lung cancer (NSCLC) collapsed cone versus pencil beam. Strahlenther Onkol 180:783–788PubMedCrossRef
25.
go back to reference Haedinger U, Krieger T, Flentje M, Wulf J (2005) Influence of calculation model on dose distribution in stereotactic radiotherapy for pulmonary targets. Int J Radiat Oncol Biol Phys 61:239–249PubMedCrossRef Haedinger U, Krieger T, Flentje M, Wulf J (2005) Influence of calculation model on dose distribution in stereotactic radiotherapy for pulmonary targets. Int J Radiat Oncol Biol Phys 61:239–249PubMedCrossRef
26.
go back to reference Jang SY, Liu HH, Wang X et al (2006) Dosimetric verification for intensity-modulated radiotherapy of thoracic cancers using experimental and Monte Carlo approaches. Int J Radiat Oncol Biol Phys 66:939–948PubMedCrossRef Jang SY, Liu HH, Wang X et al (2006) Dosimetric verification for intensity-modulated radiotherapy of thoracic cancers using experimental and Monte Carlo approaches. Int J Radiat Oncol Biol Phys 66:939–948PubMedCrossRef
27.
go back to reference Jang SY, Liu HH, Mohan R (2008) Underestimation of low-dose radiation in treatment planning of intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 71:1537–1546PubMedCrossRef Jang SY, Liu HH, Mohan R (2008) Underestimation of low-dose radiation in treatment planning of intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 71:1537–1546PubMedCrossRef
28.
go back to reference Eich HT, Engenhart-Cabillic R, Hansemann K et al (2008) Quality control of involved field radiotherapy in patients with early-favorable (HD10) and early-unfavorable (HD11) Hodgkin’s lymphoma: an analysis of the German Hodgkin Study Group. Int J Radiat Oncol Biol Phys 71:1419–1424PubMedCrossRef Eich HT, Engenhart-Cabillic R, Hansemann K et al (2008) Quality control of involved field radiotherapy in patients with early-favorable (HD10) and early-unfavorable (HD11) Hodgkin’s lymphoma: an analysis of the German Hodgkin Study Group. Int J Radiat Oncol Biol Phys 71:1419–1424PubMedCrossRef
29.
go back to reference ICRU50 (1993) International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon beam therapy. Washington, Report 50 ICRU50 (1993) International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon beam therapy. Washington, Report 50
30.
go back to reference Alber M, Nüsslin F (2002) A concept for the optimization of clinical IMRT. Z Med Phys 12:109–113PubMed Alber M, Nüsslin F (2002) A concept for the optimization of clinical IMRT. Z Med Phys 12:109–113PubMed
31.
go back to reference Alber M, Nüsslin F (1999) An objective function for radiation treatment optimization based on local biological measures. Phys Med Biol 44:479–493PubMedCrossRef Alber M, Nüsslin F (1999) An objective function for radiation treatment optimization based on local biological measures. Phys Med Biol 44:479–493PubMedCrossRef
32.
go back to reference Fippel M (1999) Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 26:1466–1475PubMedCrossRef Fippel M (1999) Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 26:1466–1475PubMedCrossRef
33.
go back to reference Fippel M, Haryanto F, Dohm O et al (2003) A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 30:301–311PubMedCrossRef Fippel M, Haryanto F, Dohm O et al (2003) A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 30:301–311PubMedCrossRef
34.
go back to reference Ahnesjö A, Saxner M, Trepp A (1992) A pencil beam model for photon dose calculation. Med Phys 19:263–273PubMedCrossRef Ahnesjö A, Saxner M, Trepp A (1992) A pencil beam model for photon dose calculation. Med Phys 19:263–273PubMedCrossRef
35.
go back to reference Ahnesjö A (1989) Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 16:577–592PubMedCrossRef Ahnesjö A (1989) Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 16:577–592PubMedCrossRef
36.
go back to reference Fippel M, Laub W, Huber B, Nüsslin F (1999) Experimental investigation of a fast Monte Carlo photon beam dose calculation algorithm. Phys Med Biol 44:3039–3054PubMedCrossRef Fippel M, Laub W, Huber B, Nüsslin F (1999) Experimental investigation of a fast Monte Carlo photon beam dose calculation algorithm. Phys Med Biol 44:3039–3054PubMedCrossRef
37.
go back to reference Verhaegen F, Seuntjens J (2003) Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol 48:107–164CrossRef Verhaegen F, Seuntjens J (2003) Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol 48:107–164CrossRef
38.
go back to reference Ahnesjö A, Aspradakis MM (1999) Dose calculations for external photon beams in radiotherapy. Phys Med Biol 44:99–155CrossRef Ahnesjö A, Aspradakis MM (1999) Dose calculations for external photon beams in radiotherapy. Phys Med Biol 44:99–155CrossRef
39.
go back to reference Eich HT, Muller RP, Engenhart-Cabillic R et al (2008) Involved-node radiotherapy in early-stage Hodgkin’s lymphoma. Definition and guidelines of the German Hodgkin Study Group (GHSG). Strahlenther Onkol 184:406–410PubMedCrossRef Eich HT, Muller RP, Engenhart-Cabillic R et al (2008) Involved-node radiotherapy in early-stage Hodgkin’s lymphoma. Definition and guidelines of the German Hodgkin Study Group (GHSG). Strahlenther Onkol 184:406–410PubMedCrossRef
40.
go back to reference Girinsky T, van der Maazen R, Specht L et al (2006) Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother Oncol 79:270–277PubMedCrossRef Girinsky T, van der Maazen R, Specht L et al (2006) Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother Oncol 79:270–277PubMedCrossRef
41.
go back to reference Liu HH (2002) Dm rather than Dw should be used in Monte Carlo treatment planning. For the proposition. Med Phys 29:922–923PubMedCrossRef Liu HH (2002) Dm rather than Dw should be used in Monte Carlo treatment planning. For the proposition. Med Phys 29:922–923PubMedCrossRef
42.
go back to reference Siebers JV, Keall PJ, Nahum AE, Mohan R (2000) Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol 45:983–995PubMedCrossRef Siebers JV, Keall PJ, Nahum AE, Mohan R (2000) Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol 45:983–995PubMedCrossRef
43.
go back to reference Wertz H, Jahnke L, Schneider F et al (2011) A novel lateral disequilibrium inclusive (LDI) pencil-beam based dose calculation algorithm: evaluation in inhomogeneous phantoms and comparison with Monte Carlo calculations. Med Phys 38:1627–1634PubMedCrossRef Wertz H, Jahnke L, Schneider F et al (2011) A novel lateral disequilibrium inclusive (LDI) pencil-beam based dose calculation algorithm: evaluation in inhomogeneous phantoms and comparison with Monte Carlo calculations. Med Phys 38:1627–1634PubMedCrossRef
Metadata
Title
Clinical relevance of different dose calculation strategies for mediastinal IMRT in Hodgkin’s disease
Authors
J. Koeck
Y. Abo-Madyan
H.T. Eich
F. Stieler
J. Fleckenstein
J. Kriz
R.-P. Mueller
F. Wenz
F. Lohr
Publication date
01-08-2012
Publisher
Springer-Verlag
Published in
Strahlentherapie und Onkologie / Issue 8/2012
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-012-0144-x

Other articles of this Issue 8/2012

Strahlentherapie und Onkologie 8/2012 Go to the issue