Skip to main content
Top
Published in: Inflammation Research 6/2023

14-06-2023 | Original Research Paper

Agmatine-IRF2BP2 interaction induces M2 phenotype of microglia by increasing IRF2-KLF4 signaling

Authors: Jiwon Kim, A Young Sim, Sumit Barua, Jong Youl Kim, Jong Eun Lee

Published in: Inflammation Research | Issue 6/2023

Login to get access

Abstract

Background

Following central nervous system (CNS) injury, the investigation for neuroinflammation is vital because of its pleiotropic role in both acute injury and long-term recovery. Agmatine (Agm) is well known for its neuroprotective effects and anti-neuroinflammatory properties. However, Agm’s mechanism for neuroprotection is still unclear. We screened target proteins that bind to Agm using a protein microarray; the results showed that Agm strongly binds to interferon regulatory factor 2 binding protein (IRF2BP2), which partakes in the inflammatory response. Based on these prior data, we attempted to elucidate the mechanism by which the combination of Agm and IRF2BP2 induces a neuroprotective phenotype of microglia.

Methods

To confirm the relationship between Agm and IRF2BP2 in neuroinflammation, we used microglia cell-line (BV2) and treated with lipopolysaccharide from Escherichia coli 0111:B4 (LPS; 20 ng/mL, 24 h) and interleukin (IL)-4 (20 ng/mL, 24 h). Although Agm bound to IRF2BP2, it failed to enhance IRF2BP2 expression in BV2.
Therefore, we shifted our focus onto interferon regulatory factor 2 (IRF2), which is a transcription factor and interacts with IRF2BP2.

Results

IRF2 was highly expressed in BV2 after LPS treatment but not after IL-4 treatment. When Agm bound to IRF2BP2 following Agm treatment, the free IRF2 translocated to the nucleus of BV2. The translocated IRF2 activated the transcription of Kruppel-like factor 4 (KLF4), causing KLF4 to be induced in BV2. The expression of KLF4 increased the CD206-positive cells in BV2.

Conclusions

Taken together, unbound IRF2, resulting from the competitive binding of Agm to IRF2BP2, may provide neuroprotection against neuroinflammation via an anti-inflammatory mechanism of microglia involving the expression of KLF4.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhu MY, Piletz JE, Halaris A, Regunathan S. Effect of agmatine against cell death induced by NMDA and glutamate in neurons and PC12 cells. Cell Mol Neurobiol. 2003;23:865–72.CrossRefPubMed Zhu MY, Piletz JE, Halaris A, Regunathan S. Effect of agmatine against cell death induced by NMDA and glutamate in neurons and PC12 cells. Cell Mol Neurobiol. 2003;23:865–72.CrossRefPubMed
2.
go back to reference Kim JH, Yenari MA, Giffard RG, Cho SW, Park KA, Lee JE. Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury. Exp Neurol. 2004;189:122–30.CrossRefPubMed Kim JH, Yenari MA, Giffard RG, Cho SW, Park KA, Lee JE. Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury. Exp Neurol. 2004;189:122–30.CrossRefPubMed
3.
go back to reference Wang WP, Iyo AH, Miguel-Hidalgo J, Regunathan S, Zhu MY. Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain Res. 2006;1084:210–6.PubMedCentralCrossRefPubMed Wang WP, Iyo AH, Miguel-Hidalgo J, Regunathan S, Zhu MY. Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain Res. 2006;1084:210–6.PubMedCentralCrossRefPubMed
4.
go back to reference Kim JH, Lee YW, Park KA, Lee WT, Lee JE. Agmatine attenuates brain edema through reducing the expression of aquaporin-1 after cerebral ischemia. J Cereb Blood Flow Metab. 2010;30:943–9.CrossRefPubMed Kim JH, Lee YW, Park KA, Lee WT, Lee JE. Agmatine attenuates brain edema through reducing the expression of aquaporin-1 after cerebral ischemia. J Cereb Blood Flow Metab. 2010;30:943–9.CrossRefPubMed
5.
go back to reference Yang MZ, Mun CH, Choi YJ, Baik JH, Park KA, Lee WT, et al. Agmatine inhibits matrix metalloproteinase-9 via endothelial nitric oxide synthase in cerebral endothelial cells. Neurol Res. 2007;29:749–54.CrossRefPubMed Yang MZ, Mun CH, Choi YJ, Baik JH, Park KA, Lee WT, et al. Agmatine inhibits matrix metalloproteinase-9 via endothelial nitric oxide synthase in cerebral endothelial cells. Neurol Res. 2007;29:749–54.CrossRefPubMed
6.
go back to reference Lee WT, Hong S, Yoon SH, Kim JH, Park KA, Seong GJ, et al. Neuroprotective effects of agmatine on oxygen-glucose deprived primary-cultured astrocytes and nuclear translocation of nuclear factor-kappa B. Brain Res. 2009;1281:64–70.CrossRefPubMed Lee WT, Hong S, Yoon SH, Kim JH, Park KA, Seong GJ, et al. Neuroprotective effects of agmatine on oxygen-glucose deprived primary-cultured astrocytes and nuclear translocation of nuclear factor-kappa B. Brain Res. 2009;1281:64–70.CrossRefPubMed
7.
go back to reference Chen HH, Keyhanian K, Zhou X, Vilmundarson RO, Almontashiri NA, Cruz SA, et al. IRF2BP2 reduces macrophage inflammation and susceptibility to atherosclerosis. Circ Res. 2015;117:671–83.CrossRefPubMed Chen HH, Keyhanian K, Zhou X, Vilmundarson RO, Almontashiri NA, Cruz SA, et al. IRF2BP2 reduces macrophage inflammation and susceptibility to atherosclerosis. Circ Res. 2015;117:671–83.CrossRefPubMed
9.
go back to reference Cruz SA, Hari A, Qin Z, Couture P, Huang H, Lagace DC, et al. Loss of IRF2BP2 in microglia increases inflammation and functional deficits after focal ischemic brain injury. Front Cell Neurosci. 2017;11:201.PubMedCentralCrossRefPubMed Cruz SA, Hari A, Qin Z, Couture P, Huang H, Lagace DC, et al. Loss of IRF2BP2 in microglia increases inflammation and functional deficits after focal ischemic brain injury. Front Cell Neurosci. 2017;11:201.PubMedCentralCrossRefPubMed
10.
go back to reference Giulian D, Corpuz M, Chapman S, Mansouri M, Robertson C. Reactive mononuclear phagocytes release neurotoxins after ischemic and traumatic injury to the central nervous system. J Neurosci Res. 1993;36:681–93.CrossRefPubMed Giulian D, Corpuz M, Chapman S, Mansouri M, Robertson C. Reactive mononuclear phagocytes release neurotoxins after ischemic and traumatic injury to the central nervous system. J Neurosci Res. 1993;36:681–93.CrossRefPubMed
11.
go back to reference Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA. 2003;100:8514–9.PubMedCentralCrossRefPubMed Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA. 2003;100:8514–9.PubMedCentralCrossRefPubMed
12.
go back to reference Huang WC, Qiao Y, Xu L, Kacimi R, Sun X, Giffard RG, et al. Direct protection of cultured neurons from ischemia-like injury by minocycline. Anat Cell Biol. 2010;43:325–31.PubMedCentralCrossRefPubMed Huang WC, Qiao Y, Xu L, Kacimi R, Sun X, Giffard RG, et al. Direct protection of cultured neurons from ischemia-like injury by minocycline. Anat Cell Biol. 2010;43:325–31.PubMedCentralCrossRefPubMed
13.
go back to reference Kawabori M, Yenari MA. The role of the microglia in acute CNS injury. Metab Brain Dis. 2015;30:381–92.CrossRefPubMed Kawabori M, Yenari MA. The role of the microglia in acute CNS injury. Metab Brain Dis. 2015;30:381–92.CrossRefPubMed
14.
go back to reference Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11:775–87.CrossRefPubMed Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11:775–87.CrossRefPubMed
15.
go back to reference Kim JY, Kim N, Yenari MA. Mechanisms and potential therapeutic applications of microglial activation after brain injury. CNS Neurosci Ther. 2015;21:309–19.CrossRefPubMed Kim JY, Kim N, Yenari MA. Mechanisms and potential therapeutic applications of microglial activation after brain injury. CNS Neurosci Ther. 2015;21:309–19.CrossRefPubMed
16.
go back to reference Barua S, Sim AY, Kim JY, Shin I, Lee JE. Maintenance of the neuroprotective function of the amino group blocked fluorescence-agmatine. Neurochem Res. 2021;46:1933–40.PubMedCentralCrossRefPubMed Barua S, Sim AY, Kim JY, Shin I, Lee JE. Maintenance of the neuroprotective function of the amino group blocked fluorescence-agmatine. Neurochem Res. 2021;46:1933–40.PubMedCentralCrossRefPubMed
17.
go back to reference Joshi L, Plastira I, Bernhart E, Reicher H, Triebl A, Kofeler HC, et al. Inhibition of autotaxin and lysophosphatidic acid receptor 5 attenuates neuroinflammation in LPS-activated BV-2 microglia and a mouse endotoxemia model. Int J Mol Sci. 2021;22:8519.PubMedCentralCrossRefPubMed Joshi L, Plastira I, Bernhart E, Reicher H, Triebl A, Kofeler HC, et al. Inhibition of autotaxin and lysophosphatidic acid receptor 5 attenuates neuroinflammation in LPS-activated BV-2 microglia and a mouse endotoxemia model. Int J Mol Sci. 2021;22:8519.PubMedCentralCrossRefPubMed
18.
go back to reference Plastira I, Bernhart E, Goeritzer M, Reicher H, Kumble VB, Kogelnik N, et al. 1-Oleyl-lysophosphatidic acid (LPA) promotes polarization of BV-2 and primary murine microglia towards an M1-like phenotype. J Neuroinflammation. 2016;13:205.PubMedCentralCrossRefPubMed Plastira I, Bernhart E, Goeritzer M, Reicher H, Kumble VB, Kogelnik N, et al. 1-Oleyl-lysophosphatidic acid (LPA) promotes polarization of BV-2 and primary murine microglia towards an M1-like phenotype. J Neuroinflammation. 2016;13:205.PubMedCentralCrossRefPubMed
19.
go back to reference Ramalho-Oliveira R, Oliveira-Vieira B, Viola JPB. IRF2BP2: a new player in the regulation of cell homeostasis. J Leukoc Biol. 2019;106:717–23.CrossRefPubMed Ramalho-Oliveira R, Oliveira-Vieira B, Viola JPB. IRF2BP2: a new player in the regulation of cell homeostasis. J Leukoc Biol. 2019;106:717–23.CrossRefPubMed
20.
go back to reference Chistiakov DA, Myasoedova VA, Revin VV, Orekhov AN, Bobryshev YV. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology. 2018;223:101–11.CrossRefPubMed Chistiakov DA, Myasoedova VA, Revin VV, Orekhov AN, Bobryshev YV. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology. 2018;223:101–11.CrossRefPubMed
21.
go back to reference Barber SA, Fultz MJ, Salkowski CA, Vogel SN. Differential expression of interferon regulatory factor 1 (IRF-1), IRF-2, and interferon consensus sequence binding protein genes in lipopolysaccharide (LPS)-responsive and LPS-hyporesponsive macrophages. Infect Immun. 1995;63:601–8.PubMedCentralCrossRefPubMed Barber SA, Fultz MJ, Salkowski CA, Vogel SN. Differential expression of interferon regulatory factor 1 (IRF-1), IRF-2, and interferon consensus sequence binding protein genes in lipopolysaccharide (LPS)-responsive and LPS-hyporesponsive macrophages. Infect Immun. 1995;63:601–8.PubMedCentralCrossRefPubMed
22.
go back to reference Harada H, Takahashi E, Itoh S, Harada K, Hori TA, Taniguchi T. Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system. Mol Cell Biol. 1994;14:1500–9.PubMedCentralPubMed Harada H, Takahashi E, Itoh S, Harada K, Hori TA, Taniguchi T. Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system. Mol Cell Biol. 1994;14:1500–9.PubMedCentralPubMed
23.
go back to reference Hayes MP, Zoon KC. Priming of human monocytes for enhanced lipopolysaccharide responses: expression of alpha interferon, interferon regulatory factors, and tumor necrosis factor. Infect Immun. 1993;61:3222–7.PubMedCentralCrossRefPubMed Hayes MP, Zoon KC. Priming of human monocytes for enhanced lipopolysaccharide responses: expression of alpha interferon, interferon regulatory factors, and tumor necrosis factor. Infect Immun. 1993;61:3222–7.PubMedCentralCrossRefPubMed
24.
go back to reference Cui H, Banerjee S, Guo S, Xie N, Liu G. IFN regulatory factor 2 inhibits expression of glycolytic genes and lipopolysaccharide-induced proinflammatory responses in macrophages. J Immunol. 2018;200:3218–30.CrossRefPubMed Cui H, Banerjee S, Guo S, Xie N, Liu G. IFN regulatory factor 2 inhibits expression of glycolytic genes and lipopolysaccharide-induced proinflammatory responses in macrophages. J Immunol. 2018;200:3218–30.CrossRefPubMed
25.
26.
go back to reference Li Z, Martin M, Zhang J, Huang HY, Bai L, Zhang J, et al. Kruppel-like factor 4 regulation of cholesterol-25-hydroxylase and liver X receptor mitigates atherosclerosis susceptibility. Circulation. 2017;136:1315–30.PubMedCentralCrossRefPubMed Li Z, Martin M, Zhang J, Huang HY, Bai L, Zhang J, et al. Kruppel-like factor 4 regulation of cholesterol-25-hydroxylase and liver X receptor mitigates atherosclerosis susceptibility. Circulation. 2017;136:1315–30.PubMedCentralCrossRefPubMed
27.
go back to reference Satriano J, Isome M, Casero RA Jr, Thomson SC, Blantz RC. Polyamine transport system mediates agmatine transport in mammalian cells. Am J Physiol Cell Physiol. 2001;281:C329–34.CrossRefPubMed Satriano J, Isome M, Casero RA Jr, Thomson SC, Blantz RC. Polyamine transport system mediates agmatine transport in mammalian cells. Am J Physiol Cell Physiol. 2001;281:C329–34.CrossRefPubMed
28.
go back to reference Wang CC, Chio CC, Chang CH, Kuo JR, Chang CP. Beneficial effect of agmatine on brain apoptosis, astrogliosis, and edema after rat transient cerebral ischemia. BMC Pharmacol. 2010;10:11.PubMedCentralCrossRefPubMed Wang CC, Chio CC, Chang CH, Kuo JR, Chang CP. Beneficial effect of agmatine on brain apoptosis, astrogliosis, and edema after rat transient cerebral ischemia. BMC Pharmacol. 2010;10:11.PubMedCentralCrossRefPubMed
29.
go back to reference Freitas AE, Egea J, Buendia I, Navarro E, Rada P, Cuadrado A, et al. Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line. Mol Neurobiol. 2015;51:1504–19.CrossRefPubMed Freitas AE, Egea J, Buendia I, Navarro E, Rada P, Cuadrado A, et al. Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line. Mol Neurobiol. 2015;51:1504–19.CrossRefPubMed
30.
go back to reference Chai J, Luo L, Hou F, Fan X, Yu J, Ma W, et al. Agmatine reduces lipopolysaccharide-mediated oxidant response via activating PI3K/Akt pathway and up-regulating Nrf2 and HO-1 expression in macrophages. PLoS ONE. 2016;11: e0163634.PubMedCentralCrossRefPubMed Chai J, Luo L, Hou F, Fan X, Yu J, Ma W, et al. Agmatine reduces lipopolysaccharide-mediated oxidant response via activating PI3K/Akt pathway and up-regulating Nrf2 and HO-1 expression in macrophages. PLoS ONE. 2016;11: e0163634.PubMedCentralCrossRefPubMed
31.
go back to reference Sahin C, Albayrak O, Akdeniz TF, Akbulut Z, Yanikkaya Demirel G, Aricioglu F. Agmatine reverses sub-chronic stress induced nod-like receptor protein 3 (NLRP3) activation and cytokine response in rats. Basic Clin Pharmacol Toxicol. 2016;119:367–75.CrossRefPubMed Sahin C, Albayrak O, Akdeniz TF, Akbulut Z, Yanikkaya Demirel G, Aricioglu F. Agmatine reverses sub-chronic stress induced nod-like receptor protein 3 (NLRP3) activation and cytokine response in rats. Basic Clin Pharmacol Toxicol. 2016;119:367–75.CrossRefPubMed
32.
go back to reference Arruda LC, Lorenzi JC, Sousa AP, Zanette DL, Palma PV, Panepucci RA, et al. Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transplant. 2015;50:380–9.CrossRefPubMed Arruda LC, Lorenzi JC, Sousa AP, Zanette DL, Palma PV, Panepucci RA, et al. Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transplant. 2015;50:380–9.CrossRefPubMed
33.
go back to reference Elser B, Lohoff M, Kock S, Giaisi M, Kirchhoff S, Krammer PH, et al. IFN-gamma represses IL-4 expression via IRF-1 and IRF-2. Immunity. 2002;17:703–12.CrossRefPubMed Elser B, Lohoff M, Kock S, Giaisi M, Kirchhoff S, Krammer PH, et al. IFN-gamma represses IL-4 expression via IRF-1 and IRF-2. Immunity. 2002;17:703–12.CrossRefPubMed
34.
go back to reference Xie C, Liu C, Wu B, Lin Y, Ma T, Xiong H, et al. Effects of IRF1 and IFN-beta interaction on the M1 polarization of macrophages and its antitumor function. Int J Mol Med. 2016;38:148–60.PubMedCentralCrossRefPubMed Xie C, Liu C, Wu B, Lin Y, Ma T, Xiong H, et al. Effects of IRF1 and IFN-beta interaction on the M1 polarization of macrophages and its antitumor function. Int J Mol Med. 2016;38:148–60.PubMedCentralCrossRefPubMed
35.
go back to reference Zhang S, Thomas K, Blanco JC, Salkowski CA, Vogel SN. The role of the interferon regulatory factors, IRF-1 and IRF-2, in LPS-induced cyclooxygenase-2 (COX-2) expression in vivo and in vitro. J Endotoxin Res. 2002;8:379–88.CrossRefPubMed Zhang S, Thomas K, Blanco JC, Salkowski CA, Vogel SN. The role of the interferon regulatory factors, IRF-1 and IRF-2, in LPS-induced cyclooxygenase-2 (COX-2) expression in vivo and in vitro. J Endotoxin Res. 2002;8:379–88.CrossRefPubMed
36.
go back to reference Klune JR, Dhupar R, Kimura S, Ueki S, Cardinal J, Nakao A, et al. Interferon regulatory factor-2 is protective against hepatic ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2012;303:G666–73.PubMedCentralCrossRefPubMed Klune JR, Dhupar R, Kimura S, Ueki S, Cardinal J, Nakao A, et al. Interferon regulatory factor-2 is protective against hepatic ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2012;303:G666–73.PubMedCentralCrossRefPubMed
37.
go back to reference Fehr T, Schoedon G, Odermatt B, Holtschke T, Schneemann M, Bachmann MF, et al. Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis. J Exp Med. 1997;185:921–31.PubMedCentralCrossRefPubMed Fehr T, Schoedon G, Odermatt B, Holtschke T, Schneemann M, Bachmann MF, et al. Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis. J Exp Med. 1997;185:921–31.PubMedCentralCrossRefPubMed
38.
go back to reference Wei D, Kanai M, Huang S, Xie K. Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis. 2006;27:23–31.CrossRefPubMed Wei D, Kanai M, Huang S, Xie K. Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis. 2006;27:23–31.CrossRefPubMed
39.
go back to reference Rowland BD, Peeper DS. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer. 2006;6:11–23.CrossRefPubMed Rowland BD, Peeper DS. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer. 2006;6:11–23.CrossRefPubMed
40.
go back to reference Feinberg MW, Wara AK, Cao Z, Lebedeva MA, Rosenbauer F, Iwasaki H, et al. The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO J. 2007;26:4138–48.PubMedCentralCrossRefPubMed Feinberg MW, Wara AK, Cao Z, Lebedeva MA, Rosenbauer F, Iwasaki H, et al. The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO J. 2007;26:4138–48.PubMedCentralCrossRefPubMed
41.
go back to reference Feinberg MW, Cao Z, Wara AK, Lebedeva MA, Senbanerjee S, Jain MK. Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem. 2005;280:38247–58.CrossRefPubMed Feinberg MW, Cao Z, Wara AK, Lebedeva MA, Senbanerjee S, Jain MK. Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem. 2005;280:38247–58.CrossRefPubMed
42.
go back to reference Li B, Sheng Z, Liu C, Qian L, Wu Y, Wu Y, et al. Kallistatin inhibits atherosclerotic inflammation by regulating macrophage polarization. Hum Gene Ther. 2019;30:339–51.CrossRefPubMed Li B, Sheng Z, Liu C, Qian L, Wu Y, Wu Y, et al. Kallistatin inhibits atherosclerotic inflammation by regulating macrophage polarization. Hum Gene Ther. 2019;30:339–51.CrossRefPubMed
43.
go back to reference Sharma N, Lu Y, Zhou G, Liao X, Kapil P, Anand P, et al. Myeloid Kruppel-like factor 4 deficiency augments atherogenesis in ApoE-/- mice–brief report. Arterioscler Thromb Vasc Biol. 2012;32:2836–8.PubMedCentralCrossRefPubMed Sharma N, Lu Y, Zhou G, Liao X, Kapil P, Anand P, et al. Myeloid Kruppel-like factor 4 deficiency augments atherogenesis in ApoE-/- mice–brief report. Arterioscler Thromb Vasc Biol. 2012;32:2836–8.PubMedCentralCrossRefPubMed
Metadata
Title
Agmatine-IRF2BP2 interaction induces M2 phenotype of microglia by increasing IRF2-KLF4 signaling
Authors
Jiwon Kim
A Young Sim
Sumit Barua
Jong Youl Kim
Jong Eun Lee
Publication date
14-06-2023
Publisher
Springer International Publishing
Published in
Inflammation Research / Issue 6/2023
Print ISSN: 1023-3830
Electronic ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-023-01741-z

Other articles of this Issue 6/2023

Inflammation Research 6/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine