Skip to main content
Top
Published in: Inflammation Research 5/2019

01-05-2019 | Obesity | Original Research Paper

Fibroblast growth factor 21 deficiency aggravates obesity-induced hypothalamic inflammation and impairs thermogenic response

Authors: Luthfiyyah Mutsnaini, Chu-Sook Kim, Jiye Kim, Yeonsoo Joe, Hun Taeg Chung, Hye-Seon Choi, Eun Roh, Min-Seon Kim, Rina Yu

Published in: Inflammation Research | Issue 5/2019

Login to get access

Abstract

Objective and design

Hypothalamic inflammation is closely associated with metabolic dysregulation. Fibroblast growth factor 21 (FGF21) is known to be an important metabolic regulator with anti-inflammatory properties. In this study, we investigated the effects of FGF21 deficiency on obesity-induced hypothalamic inflammation and thermogenic responses.

Materials and methods

FGF21-deficient mice and/or wild-type (WT) mice were fed a high-fat diet (HFD) for 12 weeks.

Results

FGF21-deficient mice fed an HFD showed increased levels of inflammatory cytokines compared with WT obese control, and this was accompanied by upregulation of gliosis markers in the hypothalamus. Expression of heat-shock protein 72, a marker of neuronal damage, was increased in the FGF21-deficient obese mice, and the expression of hypothalamic neuronal markers involved in anti-thermogenic or thermogenic responses was altered. Moreover, the protein level of uncoupling protein 1 and other thermogenic genes were markedly reduced in the brown adipose tissue of the FGF21-deficient obese mice.

Conclusions

These findings suggest that FGF21 deficiency aggravates obesity-induced hypothalamic inflammation and neuronal injury, leading to alterations in hypothalamic neural circuits accompanied by a reduction of the thermogenic response.
Literature
1.
go back to reference Le Thuc O, Stobbe K, Cansell C, Nahon J-L, Blondeau N, Rovère C. Hypothalamic inflammation and energy balance disruptions: spotlight on chemokines. Front Endocrinol. 2017;8:197.CrossRef Le Thuc O, Stobbe K, Cansell C, Nahon J-L, Blondeau N, Rovère C. Hypothalamic inflammation and energy balance disruptions: spotlight on chemokines. Front Endocrinol. 2017;8:197.CrossRef
2.
go back to reference Guillemot-Legris O, Muccioli GG. Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci. 2017;40(4):237–53.CrossRefPubMed Guillemot-Legris O, Muccioli GG. Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci. 2017;40(4):237–53.CrossRefPubMed
3.
go back to reference Yang J, Kim C-S, Tu TH, Kim M-S, Goto T, Kawada T, et al. Quercetin protects obesity-induced hypothalamic inflammation by reducing microglia-mediated inflammatory responses via HO-1 induction. Nutrients. 2017;9(7):650.CrossRefPubMedCentral Yang J, Kim C-S, Tu TH, Kim M-S, Goto T, Kawada T, et al. Quercetin protects obesity-induced hypothalamic inflammation by reducing microglia-mediated inflammatory responses via HO-1 induction. Nutrients. 2017;9(7):650.CrossRefPubMedCentral
4.
go back to reference Lee CH, Kim HJ, Lee Y-S, Kang GM, Lim HS, Lee S-h, et al. Hypothalamic macrophage inducible nitric oxide synthase mediates obesity-associated hypothalamic inflammation. Cell Rep. 2018;25(4):934–46.e5.CrossRefPubMedPubMedCentral Lee CH, Kim HJ, Lee Y-S, Kang GM, Lim HS, Lee S-h, et al. Hypothalamic macrophage inducible nitric oxide synthase mediates obesity-associated hypothalamic inflammation. Cell Rep. 2018;25(4):934–46.e5.CrossRefPubMedPubMedCentral
5.
go back to reference Arruda AP, Milanski M, Coope A, Torsoni AS, Ropelle E, Carvalho DP, et al. Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion. Endocrinology. 2011;152(4):1314–26.CrossRefPubMed Arruda AP, Milanski M, Coope A, Torsoni AS, Ropelle E, Carvalho DP, et al. Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion. Endocrinology. 2011;152(4):1314–26.CrossRefPubMed
6.
go back to reference Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73.CrossRefPubMedPubMedCentral Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73.CrossRefPubMedPubMedCentral
7.
go back to reference Kim KH, Lee M-S. FGF21 as a mediator of adaptive responses to stress and metabolic benefits of anti-diabetic drugs. J Endocrinol. 2015;226(1):R1–16.CrossRefPubMed Kim KH, Lee M-S. FGF21 as a mediator of adaptive responses to stress and metabolic benefits of anti-diabetic drugs. J Endocrinol. 2015;226(1):R1–16.CrossRefPubMed
8.
go back to reference Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Investig. 2005;115(6):1627.CrossRefPubMed Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Investig. 2005;115(6):1627.CrossRefPubMed
10.
go back to reference Markan KR, Naber MC, Ameka MK, Anderegg MD, Mangelsdorf DJ, Kliewer SA, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014;63(12):4057–63.CrossRefPubMedPubMedCentral Markan KR, Naber MC, Ameka MK, Anderegg MD, Mangelsdorf DJ, Kliewer SA, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014;63(12):4057–63.CrossRefPubMedPubMedCentral
11.
go back to reference Staiger H, Keuper M, Berti L, Hrabě de Angelis M, Häring H-U. Fibroblast growth factor 21-metabolic role in mice and men. Endocr Rev. 2017;38(5):468–88.CrossRefPubMed Staiger H, Keuper M, Berti L, Hrabě de Angelis M, Häring H-U. Fibroblast growth factor 21-metabolic role in mice and men. Endocr Rev. 2017;38(5):468–88.CrossRefPubMed
12.
go back to reference Jimenez V, Jambrina C, Casana E, Sacristan V, Muñoz S, Darriba S, et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med. 2018;10(8):e8791.CrossRefPubMedPubMedCentral Jimenez V, Jambrina C, Casana E, Sacristan V, Muñoz S, Darriba S, et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med. 2018;10(8):e8791.CrossRefPubMedPubMedCentral
13.
go back to reference Tan BK, Hallschmid M, Adya R, Kern W, Lehnert H, Randeva HS. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid. Diabetes. 2011;60(11):2758–62.CrossRefPubMedPubMedCentral Tan BK, Hallschmid M, Adya R, Kern W, Lehnert H, Randeva HS. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid. Diabetes. 2011;60(11):2758–62.CrossRefPubMedPubMedCentral
15.
go back to reference Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010;24(10):2050–64.CrossRefPubMedPubMedCentral Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010;24(10):2050–64.CrossRefPubMedPubMedCentral
16.
go back to reference Bookout AL, De Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. 2013;19(9):1147–52.CrossRefPubMedPubMedCentral Bookout AL, De Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. 2013;19(9):1147–52.CrossRefPubMedPubMedCentral
17.
go back to reference Kharitonenkov A, Dunbar JD, Bina HA, Bright S, Moyers JS, Zhang C, et al. FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J Cell Physiol. 2008;215(1):1–7.CrossRefPubMed Kharitonenkov A, Dunbar JD, Bina HA, Bright S, Moyers JS, Zhang C, et al. FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J Cell Physiol. 2008;215(1):1–7.CrossRefPubMed
18.
go back to reference Wang Q, Yuan J, Yu Z, Lin L, Jiang Y, Cao Z, et al. FGF21 attenuates high-fat diet-induced cognitive impairment via metabolic regulation and anti-inflammation of obese mice. Mol Neurobiol. 2017;55(6):4702–17.CrossRefPubMedPubMedCentral Wang Q, Yuan J, Yu Z, Lin L, Jiang Y, Cao Z, et al. FGF21 attenuates high-fat diet-induced cognitive impairment via metabolic regulation and anti-inflammation of obese mice. Mol Neurobiol. 2017;55(6):4702–17.CrossRefPubMedPubMedCentral
20.
go back to reference Shi Y-C, Lau J, Lin Z, Zhang H, Zhai L, Sperk G, et al. Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab. 2013;17(2):236–48.CrossRefPubMed Shi Y-C, Lau J, Lin Z, Zhang H, Zhai L, Sperk G, et al. Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab. 2013;17(2):236–48.CrossRefPubMed
21.
go back to reference Morton G, Cummings D, Baskin D, Barsh G, Schwartz M. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289–95.CrossRefPubMed Morton G, Cummings D, Baskin D, Barsh G, Schwartz M. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289–95.CrossRefPubMed
24.
go back to reference Xanthos DN, Sandkühler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 2014;15(1):43.CrossRefPubMed Xanthos DN, Sandkühler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 2014;15(1):43.CrossRefPubMed
25.
go back to reference Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57.CrossRefPubMed Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57.CrossRefPubMed
27.
go back to reference Kwon YH, Kim J, Kim CS, Tu TH, Kim MS, Suk K, et al. Hypothalamic lipid-laden astrocytes induce microglia migration and activation. FEBS Lett. 2017;591(12):1742–51.CrossRefPubMed Kwon YH, Kim J, Kim CS, Tu TH, Kim MS, Suk K, et al. Hypothalamic lipid-laden astrocytes induce microglia migration and activation. FEBS Lett. 2017;591(12):1742–51.CrossRefPubMed
28.
go back to reference Leng Y, Wang Z, Tsai L-K, Leeds P, Fessler EB, Wang J, et al. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol Psychiatry. 2015;20(2):215.CrossRefPubMed Leng Y, Wang Z, Tsai L-K, Leeds P, Fessler EB, Wang J, et al. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol Psychiatry. 2015;20(2):215.CrossRefPubMed
29.
go back to reference Raji CA, Ho AJ, Parikshak NN, Becker JT, Lopez OL, Kuller LH, et al. Brain structure and obesity. Hum Brain Mapp. 2010;31(3):353–64.PubMedPubMedCentral Raji CA, Ho AJ, Parikshak NN, Becker JT, Lopez OL, Kuller LH, et al. Brain structure and obesity. Hum Brain Mapp. 2010;31(3):353–64.PubMedPubMedCentral
30.
go back to reference Wang H, Wen B, Cheng J, Li H. Brain structural differences between normal and obese adults and their links with lack of perseverance, negative urgency, and sensation seeking. Sci Rep. 2017;7:40595.CrossRefPubMedPubMedCentral Wang H, Wen B, Cheng J, Li H. Brain structural differences between normal and obese adults and their links with lack of perseverance, negative urgency, and sensation seeking. Sci Rep. 2017;7:40595.CrossRefPubMedPubMedCentral
31.
go back to reference Butler AB, Hodos W. Evolution and adaptation of the brain, behavior, and intelligence. In: Butler AB, editor. Comparative vertebrate neuroanatomy: evolution and adaptation. 2nd ed. New Jersey: Wiley; 2005. p. 93–111.CrossRef Butler AB, Hodos W. Evolution and adaptation of the brain, behavior, and intelligence. In: Butler AB, editor. Comparative vertebrate neuroanatomy: evolution and adaptation. 2nd ed. New Jersey: Wiley; 2005. p. 93–111.CrossRef
32.
go back to reference Chechi K, Carpentier AC, Richard D. Understanding the brown adipocyte as a contributor to energy homeostasis. Trends Endoctinol Metab. 2013;24(8):408–20.CrossRef Chechi K, Carpentier AC, Richard D. Understanding the brown adipocyte as a contributor to energy homeostasis. Trends Endoctinol Metab. 2013;24(8):408–20.CrossRef
33.
go back to reference Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, et al. The brain and brown fat. Ann Med. 2015;47(2):150–68.CrossRefPubMed Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, et al. The brain and brown fat. Ann Med. 2015;47(2):150–68.CrossRefPubMed
34.
go back to reference Yang X, Ruan H-B. Neuronal control of adaptive thermogenesis. Front Endocrinol. 2015;6:149.CrossRef Yang X, Ruan H-B. Neuronal control of adaptive thermogenesis. Front Endocrinol. 2015;6:149.CrossRef
35.
go back to reference Zhang X, van den Pol AN. Thyrotropin-releasing hormone (TRH) inhibits melanin-concentrating hormone neurons: implications for TRH-mediated anorexic and arousal actions. J Neurosci. 2012;32(9):3032–43.CrossRefPubMedPubMedCentral Zhang X, van den Pol AN. Thyrotropin-releasing hormone (TRH) inhibits melanin-concentrating hormone neurons: implications for TRH-mediated anorexic and arousal actions. J Neurosci. 2012;32(9):3032–43.CrossRefPubMedPubMedCentral
36.
37.
go back to reference Dalvi P, Chalmers J, Luo V, Han D-Y, Wellhauser L, Liu Y, et al. High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-α on appetite-regulating NPY neurons. Int J Obes. 2017;41(1):149–58.CrossRef Dalvi P, Chalmers J, Luo V, Han D-Y, Wellhauser L, Liu Y, et al. High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-α on appetite-regulating NPY neurons. Int J Obes. 2017;41(1):149–58.CrossRef
38.
go back to reference Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K, et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes. 2010;59(7):1817–24.CrossRefPubMedPubMedCentral Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K, et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes. 2010;59(7):1817–24.CrossRefPubMedPubMedCentral
39.
go back to reference Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–81.CrossRefPubMedPubMedCentral Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–81.CrossRefPubMedPubMedCentral
Metadata
Title
Fibroblast growth factor 21 deficiency aggravates obesity-induced hypothalamic inflammation and impairs thermogenic response
Authors
Luthfiyyah Mutsnaini
Chu-Sook Kim
Jiye Kim
Yeonsoo Joe
Hun Taeg Chung
Hye-Seon Choi
Eun Roh
Min-Seon Kim
Rina Yu
Publication date
01-05-2019
Publisher
Springer International Publishing
Keywords
Obesity
Obesity
Published in
Inflammation Research / Issue 5/2019
Print ISSN: 1023-3830
Electronic ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-019-01222-2

Other articles of this Issue 5/2019

Inflammation Research 5/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine