Skip to main content
Top
Published in: Clinical Pharmacokinetics 9/2012

01-09-2012 | Review Article

Carnitine and Acylcarnitines

Pharmacokinetic, Pharmacological and Clinical Aspects

Authors: Dr Stephanie E. Reuter, Allan M. Evans

Published in: Clinical Pharmacokinetics | Issue 9/2012

Login to get access

Abstract

L-Carnitine (levocarnitine) is a naturally occurring compound found in all mammalian species. The most important biological function of L-carnitine is in the transport of fatty acids into the mitochondria for subsequent β-oxidation, a process which results in the esterification of L-carnitine to form acylcarnitine derivatives. As such, the endogenous carnitine pool is comprised of L-carnitine and various short-, medium-and long-chain acylcarnitines.
The physiological importance of L-carnitine and its obligatory role in the mitochondrial metabolism of fatty acids has been clearly established; however, more recently, additional functions of the carnitine system have been described, including the removal of excess acyl groups from the body and the modulation of intracellular coenzyme A (CoA) homeostasis. In light of this, acylcarnitines cannot simply be considered by-products of the enzymatic carnitine transfer system, but provide indirect evidence of altered mitochondrial metabolism. Consequently, examination of the contribution of L-carnitine and acylcarnitines to the en-dogenous carnitine pool (i.e. carnitine pool composition) is critical in order to adequately characterize metabolic status.
The concentrations of L-carnitine and its esters are maintained within relatively narrow limits for normal biological functioning in their pivotal roles in fatty acid oxidation and maintenance of free CoA availability. The homeostasis of carnitine is multifaceted with concentrations achieved and maintained by a combination of oral absorption, de novo biosynthesis, carrier-mediated distribution into tissues and extensive, but saturable, renal tubular reabsorption.
Various disorders of carnitine insufficiency have been described but ultimately all result in impaired entry of fatty acids into the mitochondria and consequently disturbed lipid oxidation. Given the sensitivity of acylcarnitine concentrations and the relative carnitine pool composition in reflecting the intramitochondrial acyl-CoA to free CoA ratio (and, hence, any disturbances in mitochondrial metabolism), the relative contribution of L-carnitine and acylcarnitines within the total carnitine pool is therefore considered critical in the identification of mitochondria dysfunction. Although there is considerable research in the literature focused on disorders of carnitine insufficiency, relatively few have examined relative carnitine pool composition in these conditions; consequently, the complexity of these disorders may not be fully understood. Similarly, although important studies have been conducted establishing the pharmacokinetics of exogenous carnitine and short-chain carnitine esters in healthy volunteers, few studies have examined carnitine pharmacokinetics in patient groups. Furthermore, the impact of L-carnitine administration on the kinetics of acylcarnitines has not been established.
Given the importance of L-carnitine as well as acylcarnitines in maintaining normal mitochondrial function, this review seeks to examine previous research associated with the homeostasis and pharmaco-kinetics of L-carnitine and its esters, and highlight potential areas of future research.
Literature
1.
go back to reference Gulewitsch W, Krimberg R. Zur kenntnis der extraktivstoffe der muskeln. II. Mitteilung. Über das carnitin. Hoppe-Seyler’s Z Physiol Chem 1905; 45(3–4): 326–30CrossRef Gulewitsch W, Krimberg R. Zur kenntnis der extraktivstoffe der muskeln. II. Mitteilung. Über das carnitin. Hoppe-Seyler’s Z Physiol Chem 1905; 45(3–4): 326–30CrossRef
2.
go back to reference Tomita M, Sendju Y. Über die oxyaminoverbindungen, welche die biuretreaktion zeigen. III. Spaltung der γ-amino-β-oxy-buttersäure in die optischaktiven komponenten. Hoppe-Seyler’s Z Physiol Chem 1927; 169(4–6): 263–77CrossRef Tomita M, Sendju Y. Über die oxyaminoverbindungen, welche die biuretreaktion zeigen. III. Spaltung der γ-amino-β-oxy-buttersäure in die optischaktiven komponenten. Hoppe-Seyler’s Z Physiol Chem 1927; 169(4–6): 263–77CrossRef
3.
go back to reference Fritz I. The effect of muscle extracts on the oxidation of palmitic acid by liver slices and homogenates. Acta Physiol Scand 1955; 34(4): 367–85PubMedCrossRef Fritz I. The effect of muscle extracts on the oxidation of palmitic acid by liver slices and homogenates. Acta Physiol Scand 1955; 34(4): 367–85PubMedCrossRef
4.
go back to reference Friedman S, Fraenkel G. Reversible enzymatic acetylation of carnitine. Arch Biochem Biophys 1955; 59(2): 491–501PubMedCrossRef Friedman S, Fraenkel G. Reversible enzymatic acetylation of carnitine. Arch Biochem Biophys 1955; 59(2): 491–501PubMedCrossRef
5.
go back to reference Carter HE, Bhattacharyya PK, Weidman KR, et al. Chemical studies on vitamin BT isolation and characterization as carnitine. Arch Biochem Biophys 1952; 38: 405–16PubMedCrossRef Carter HE, Bhattacharyya PK, Weidman KR, et al. Chemical studies on vitamin BT isolation and characterization as carnitine. Arch Biochem Biophys 1952; 38: 405–16PubMedCrossRef
6.
go back to reference Bremer J. Carnitine: metabolism and functions. Physiol Rev 1983; 63(4): 1420–80PubMed Bremer J. Carnitine: metabolism and functions. Physiol Rev 1983; 63(4): 1420–80PubMed
7.
8.
go back to reference Choi YR, Fogle PJ, Clarke PR, et al. Quantitation of water-soluble acylcarnitines and carnitine acyltransferases in rat tissues. J Biol Chem 1977; 252(22): 7930–1PubMed Choi YR, Fogle PJ, Clarke PR, et al. Quantitation of water-soluble acylcarnitines and carnitine acyltransferases in rat tissues. J Biol Chem 1977; 252(22): 7930–1PubMed
9.
go back to reference Pons R, de Vivo DC. Primary and secondary carnitine deficiency syndromes. J Child Neurol 1995; 10 Suppl. 2: S8–24PubMed Pons R, de Vivo DC. Primary and secondary carnitine deficiency syndromes. J Child Neurol 1995; 10 Suppl. 2: S8–24PubMed
10.
go back to reference Hoppel C. The role of carnitine in normal and altered fatty acid metabolism. Am J Kidney Dis 2003; 41 (4 Suppl. 4): S4–12PubMedCrossRef Hoppel C. The role of carnitine in normal and altered fatty acid metabolism. Am J Kidney Dis 2003; 41 (4 Suppl. 4): S4–12PubMedCrossRef
11.
go back to reference Rebouche CJ, Paulson DJ. Carnitine metabolism and function in humans. Annu Rev Nutr 1986; 6: 41–66PubMedCrossRef Rebouche CJ, Paulson DJ. Carnitine metabolism and function in humans. Annu Rev Nutr 1986; 6: 41–66PubMedCrossRef
12.
go back to reference McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur JBiochem 1997; 244(1): 1–14CrossRef McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur JBiochem 1997; 244(1): 1–14CrossRef
13.
go back to reference Pande SV, Parvin R. Carnitine-acylcarnitine translocase catalyzes an equilibrating unidirectional transport as well. J Biol Chem 1980; 255(7): 2994–3001PubMed Pande SV, Parvin R. Carnitine-acylcarnitine translocase catalyzes an equilibrating unidirectional transport as well. J Biol Chem 1980; 255(7): 2994–3001PubMed
14.
go back to reference Pande SV. A mitochondrial carnitine acylcarnitine translocase system. Proc Natl Acad Sci U S A 1975; 72(3): 883–7PubMedCrossRef Pande SV. A mitochondrial carnitine acylcarnitine translocase system. Proc Natl Acad Sci U S A 1975; 72(3): 883–7PubMedCrossRef
15.
go back to reference Miyazawa S, Ozasa H, Osumi T, et al. Purification and properties of carnitine octanoyltransferase and carnitine palmitoyltransferase from rat liver. J Biochem 1983; 94(2): 529–42PubMed Miyazawa S, Ozasa H, Osumi T, et al. Purification and properties of carnitine octanoyltransferase and carnitine palmitoyltransferase from rat liver. J Biochem 1983; 94(2): 529–42PubMed
17.
go back to reference Ramsay RR, Arduini A. The carnitine acyltransferases and their role in modulating acyl-CoA pools. Arch Biochem Biophys 1993; 302(2): 307–14PubMedCrossRef Ramsay RR, Arduini A. The carnitine acyltransferases and their role in modulating acyl-CoA pools. Arch Biochem Biophys 1993; 302(2): 307–14PubMedCrossRef
18.
go back to reference Brass EP, Hoppel CL. Relationship between acid-soluble carnitine and coenzyme A pools in vivo. Biochem J 1980; 190(3): 495–504PubMed Brass EP, Hoppel CL. Relationship between acid-soluble carnitine and coenzyme A pools in vivo. Biochem J 1980; 190(3): 495–504PubMed
19.
go back to reference Osmundsen H, Bremer J, Pedersen JI. Metabolic aspects of peroxisomal beta-oxidation. Biochim Biophys Acta 1991; 1085(2): 141–58PubMedCrossRef Osmundsen H, Bremer J, Pedersen JI. Metabolic aspects of peroxisomal beta-oxidation. Biochim Biophys Acta 1991; 1085(2): 141–58PubMedCrossRef
20.
go back to reference Ramsay RR. The role of the carnitine system in peroxisomal fatty acid oxidation. Am J Med Sci 1999; 318(1): 28–35PubMedCrossRef Ramsay RR. The role of the carnitine system in peroxisomal fatty acid oxidation. Am J Med Sci 1999; 318(1): 28–35PubMedCrossRef
21.
go back to reference Steiber A, Kerner J, Hoppel CL. Carnitine: A nutritional, biosynthetic, and functional perspective. Mol Aspects Med 2004; 25(5–6): 455–73PubMedCrossRef Steiber A, Kerner J, Hoppel CL. Carnitine: A nutritional, biosynthetic, and functional perspective. Mol Aspects Med 2004; 25(5–6): 455–73PubMedCrossRef
22.
go back to reference Rebouche CJ. Metabolic fate of dietary carnitine in humans. In: Carter AL, editor. Current concepts in carnitine research. Boca Raton (FL): CRC Press, 1992: 37–48 Rebouche CJ. Metabolic fate of dietary carnitine in humans. In: Carter AL, editor. Current concepts in carnitine research. Boca Raton (FL): CRC Press, 1992: 37–48
23.
go back to reference Rebouche CJ. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann N Y Acad Sci 2004; 1033: 30–41PubMedCrossRef Rebouche CJ. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann N Y Acad Sci 2004; 1033: 30–41PubMedCrossRef
24.
go back to reference Lombard KA, Olson AL, Nelson SE, et al. Carnitine status of lactoovovegetarians and strict vegetarian adults and children. Am J Clin Nutr 1989; 50(2): 301–6PubMed Lombard KA, Olson AL, Nelson SE, et al. Carnitine status of lactoovovegetarians and strict vegetarian adults and children. Am J Clin Nutr 1989; 50(2): 301–6PubMed
25.
go back to reference Li B, Lloyd ML, Gudjonsson H, et al. The effect of enteral carnitine administration in humans. Am J Clin Nutr 1992; 55(4): 838–45PubMed Li B, Lloyd ML, Gudjonsson H, et al. The effect of enteral carnitine administration in humans. Am J Clin Nutr 1992; 55(4): 838–45PubMed
26.
go back to reference Kato Y, Sugiura M, Sugiura T, et al. Organic cation/carnitine transporter OCTN2 (Slc22a5) is responsible for carnitine transport across apical mem-branes of small intestinal epithelial cells in mouse. Mol Pharmacol 2006; 70(3): 829–37PubMedCrossRef Kato Y, Sugiura M, Sugiura T, et al. Organic cation/carnitine transporter OCTN2 (Slc22a5) is responsible for carnitine transport across apical mem-branes of small intestinal epithelial cells in mouse. Mol Pharmacol 2006; 70(3): 829–37PubMedCrossRef
27.
go back to reference Gross CJ, Henderson LM. Absorption of D- and L-carnitine by the intestine and kidney tubule in the rat. Biochim Biophys Acta 1984; 772(2): 209–19PubMedCrossRef Gross CJ, Henderson LM. Absorption of D- and L-carnitine by the intestine and kidney tubule in the rat. Biochim Biophys Acta 1984; 772(2): 209–19PubMedCrossRef
28.
go back to reference Shaw RD, Li BUK, Hamilton JW, et al. Carnitine transport in rat small intestine. Am J Physiol 1983; 245(3): G376–81PubMed Shaw RD, Li BUK, Hamilton JW, et al. Carnitine transport in rat small intestine. Am J Physiol 1983; 245(3): G376–81PubMed
29.
go back to reference McCloud E, Ma TY, Grant KE, et al. Uptake of L-carnitine by a human intestinal epithelial cell line, Caco-2. Gastroenterology 1996; 111(6): 1534–40PubMedCrossRef McCloud E, Ma TY, Grant KE, et al. Uptake of L-carnitine by a human intestinal epithelial cell line, Caco-2. Gastroenterology 1996; 111(6): 1534–40PubMedCrossRef
30.
go back to reference Hamilton JW, Li BUK, Shug AL, et al. Carnitine transport in human intestinal biopsy specimens: demonstration of an active transport system. Gastroenterology 1986; 91(1): 10–6PubMed Hamilton JW, Li BUK, Shug AL, et al. Carnitine transport in human intestinal biopsy specimens: demonstration of an active transport system. Gastroenterology 1986; 91(1): 10–6PubMed
31.
go back to reference Gudjonsson H, Li BU, Shug AL, et al. In vivo studies of intestinal carnitine absorption in rats. Gastroenterology 1985; 88(6): 1880–7PubMed Gudjonsson H, Li BU, Shug AL, et al. In vivo studies of intestinal carnitine absorption in rats. Gastroenterology 1985; 88(6): 1880–7PubMed
32.
go back to reference Gudjonsson H, Li BUK, Shug AL, et al. Studies of carnitine metabolism in relation to intestinal absorption. Am J Physiol 1985; 248(3): G313–9PubMed Gudjonsson H, Li BUK, Shug AL, et al. Studies of carnitine metabolism in relation to intestinal absorption. Am J Physiol 1985; 248(3): G313–9PubMed
33.
go back to reference Gross CJ, Savaiano DA. Effect of development and nutritional state on the uptake, metabolism and release of free and acetyl-L-carnitine by the rodent small intestine. Biochim Biophys Acta 1993; 1170(3): 265–74PubMedCrossRef Gross CJ, Savaiano DA. Effect of development and nutritional state on the uptake, metabolism and release of free and acetyl-L-carnitine by the rodent small intestine. Biochim Biophys Acta 1993; 1170(3): 265–74PubMedCrossRef
34.
go back to reference Rebouche CJ, Mack DL, Edmonson PF. L-Carnitine dissimilation in the gastrointestinal tract of the rat. Biochemistry 1984; 23(26): 6422–6PubMedCrossRef Rebouche CJ, Mack DL, Edmonson PF. L-Carnitine dissimilation in the gastrointestinal tract of the rat. Biochemistry 1984; 23(26): 6422–6PubMedCrossRef
35.
go back to reference Bain MA, Faull R, Milne RW, et al. Oral L-carnitine: metabolite formation and hemodialysis. Curr Drug Metab 2006; 7(7): 811–6PubMedCrossRef Bain MA, Faull R, Milne RW, et al. Oral L-carnitine: metabolite formation and hemodialysis. Curr Drug Metab 2006; 7(7): 811–6PubMedCrossRef
36.
go back to reference Bain MA, Fornasini G, Evans AM. Trimethylamine: metabolic, pharmacokinetic and safety aspects. Curr Drug Metab 2005; 6(3): 227–40PubMedCrossRef Bain MA, Fornasini G, Evans AM. Trimethylamine: metabolic, pharmacokinetic and safety aspects. Curr Drug Metab 2005; 6(3): 227–40PubMedCrossRef
37.
go back to reference Rebouche CJ, Chenard CA. Metabolic fate of dietary carnitine in human adults: identification and quantification of urinary and fecal metabolites. J Nutr 1991; 121(4): 539–46PubMed Rebouche CJ, Chenard CA. Metabolic fate of dietary carnitine in human adults: identification and quantification of urinary and fecal metabolites. J Nutr 1991; 121(4): 539–46PubMed
38.
39.
go back to reference Rebouche CJ. Carnitine function and requirements during the life cycle. FASEB J 1992; 6(15): 3379–86PubMed Rebouche CJ. Carnitine function and requirements during the life cycle. FASEB J 1992; 6(15): 3379–86PubMed
40.
go back to reference Tanphaichitr V, Broquist HP. Role of lysine and ε-N-trimethyllysine in carnitine biosynthesis. II: studies in the rat. J Biol Chem 1973; 248(6): 2176–81PubMed Tanphaichitr V, Broquist HP. Role of lysine and ε-N-trimethyllysine in carnitine biosynthesis. II: studies in the rat. J Biol Chem 1973; 248(6): 2176–81PubMed
41.
go back to reference Horne DW, Broquist HP. Role of lysine and ε-N-trimethyllysine in carnitine biosynthesis. I: studies in Neurospora crassa. J Biol Chem 1973; 248(6): 2170–5PubMed Horne DW, Broquist HP. Role of lysine and ε-N-trimethyllysine in carnitine biosynthesis. I: studies in Neurospora crassa. J Biol Chem 1973; 248(6): 2170–5PubMed
42.
go back to reference Hulse JD, Ellis SR, Henderson LM. Carnitine biosynthesis: beta-hydroxylation of trimethyllysine by an alpha-ketoglutarate-dependent mitochondrial dioxygenase. J Biol Chem 1978; 253(5): 1654–9PubMed Hulse JD, Ellis SR, Henderson LM. Carnitine biosynthesis: beta-hydroxylation of trimethyllysine by an alpha-ketoglutarate-dependent mitochondrial dioxygenase. J Biol Chem 1978; 253(5): 1654–9PubMed
43.
go back to reference Sachan DS, Hoppel CL. Carnitine biosynthesis. Hydroxylation of N-6-trimethyl-lysine to 3-hydroxy-N6-trimethyl-lysine. Biochem J 1980; 188(2): 529–34PubMed Sachan DS, Hoppel CL. Carnitine biosynthesis. Hydroxylation of N-6-trimethyl-lysine to 3-hydroxy-N6-trimethyl-lysine. Biochem J 1980; 188(2): 529–34PubMed
44.
go back to reference Sachan DS, Broquist HP. Synthesis of carnitine from epsilon-N-trimethyllysine in post mitochondrial fractions of Neurospora crassa. Biochem Biophys Res Commun 1980; 96(2): 870–5PubMedCrossRef Sachan DS, Broquist HP. Synthesis of carnitine from epsilon-N-trimethyllysine in post mitochondrial fractions of Neurospora crassa. Biochem Biophys Res Commun 1980; 96(2): 870–5PubMedCrossRef
45.
go back to reference Rebouche CJ, Bosch EP, Chenard CA, et al. Utilization of dietary precursors for carnitine synthesis in human adults. J Nutr 1989; 119(12): 1907–13PubMed Rebouche CJ, Bosch EP, Chenard CA, et al. Utilization of dietary precursors for carnitine synthesis in human adults. J Nutr 1989; 119(12): 1907–13PubMed
46.
go back to reference Rebouche CJ, Lehman LJ, Olson L. Epsilon-N-trimethyllysine availability regulates the rate of carnitine biosynthesis in the growing rat. J Nutr 1986; 116(5): 751–9PubMed Rebouche CJ, Lehman LJ, Olson L. Epsilon-N-trimethyllysine availability regulates the rate of carnitine biosynthesis in the growing rat. J Nutr 1986; 116(5): 751–9PubMed
47.
go back to reference Rebouche CJ, Engel AG. Tissue distribution of carnitine biosynthetic enzymes in man. Biochim Biophys Acta 1980; 630(1): 22–9PubMedCrossRef Rebouche CJ, Engel AG. Tissue distribution of carnitine biosynthetic enzymes in man. Biochim Biophys Acta 1980; 630(1): 22–9PubMedCrossRef
48.
go back to reference Hulse JD, Henderson LM. Carnitine biosynthesis: purification of 4-N′-tri-methylaminobutyraldehyde dehydrogenase from beef liver. J Biol Chem 1980; 255(3): 1146–51PubMed Hulse JD, Henderson LM. Carnitine biosynthesis: purification of 4-N′-tri-methylaminobutyraldehyde dehydrogenase from beef liver. J Biol Chem 1980; 255(3): 1146–51PubMed
49.
go back to reference Englard S, Blanchard JS, Midelfort CF. Gamma-butyrobetaine hydroxylase: stereochemical course of the hydroxylation reaction. Biochemistry 1985; 24(5): 1110–6PubMedCrossRef Englard S, Blanchard JS, Midelfort CF. Gamma-butyrobetaine hydroxylase: stereochemical course of the hydroxylation reaction. Biochemistry 1985; 24(5): 1110–6PubMedCrossRef
50.
go back to reference Lindstedt G, Lindstedt S. Cofactor requirements of gamma-butyrobetaine hydroxylase from rat liver. J Biol Chem 1970; 245(16): 4178–86PubMed Lindstedt G, Lindstedt S. Cofactor requirements of gamma-butyrobetaine hydroxylase from rat liver. J Biol Chem 1970; 245(16): 4178–86PubMed
51.
go back to reference Brass EP. Pharmacokinetic considerations for the therapeutic use of carnitine in hemodialysis patients. Clin Ther 1995; 17(2): 176–85PubMedCrossRef Brass EP. Pharmacokinetic considerations for the therapeutic use of carnitine in hemodialysis patients. Clin Ther 1995; 17(2): 176–85PubMedCrossRef
52.
go back to reference Reuter SE, Evans AM, Chace DH, et al. Determination of the reference range of endogenous plasma carnitines in healthy adults. Ann Clin Biochem 2008; 45(6): 585–92PubMedCrossRef Reuter SE, Evans AM, Chace DH, et al. Determination of the reference range of endogenous plasma carnitines in healthy adults. Ann Clin Biochem 2008; 45(6): 585–92PubMedCrossRef
53.
go back to reference Niu YJ, Jiang ZM, Shu H, et al. Assay of carnitine in plasma and urine of healthy adults [in Chinese; abstract]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2002; 24(2): 185–7PubMed Niu YJ, Jiang ZM, Shu H, et al. Assay of carnitine in plasma and urine of healthy adults [in Chinese; abstract]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2002; 24(2): 185–7PubMed
54.
go back to reference Vinci E, Rampello E, Zanoli L, et al. Serum carnitine levels in patients with tumoral cachexia. Eur J Intern Med 2005; 16(6): 419–23PubMedCrossRef Vinci E, Rampello E, Zanoli L, et al. Serum carnitine levels in patients with tumoral cachexia. Eur J Intern Med 2005; 16(6): 419–23PubMedCrossRef
55.
go back to reference Lohninger A, Sendic A, Staniek H, et al. Endurance exercise training and L-carnitine supplementation stimulates gene expression in the blood and muscle cells in young athletes and middle aged subjects. Monatsh Chem 2005; 136(8): 1425–42CrossRef Lohninger A, Sendic A, Staniek H, et al. Endurance exercise training and L-carnitine supplementation stimulates gene expression in the blood and muscle cells in young athletes and middle aged subjects. Monatsh Chem 2005; 136(8): 1425–42CrossRef
56.
go back to reference Bene J, Komlosi K, Gasztonyi B, et al. Plasma carnitine ester profile in adult celiac disease patients maintained on long-term gluten free diet. World J Gastroenterol 2005; 11(42): 6671–5PubMed Bene J, Komlosi K, Gasztonyi B, et al. Plasma carnitine ester profile in adult celiac disease patients maintained on long-term gluten free diet. World J Gastroenterol 2005; 11(42): 6671–5PubMed
57.
go back to reference Jones MG, Goodwin CS, Amjad S, et al. Plasma and urinary carnitine and acylcarnitines in chronic fatigue syndrome. Clin Chim Acta 2005; 360(1–2): 173–7PubMedCrossRef Jones MG, Goodwin CS, Amjad S, et al. Plasma and urinary carnitine and acylcarnitines in chronic fatigue syndrome. Clin Chim Acta 2005; 360(1–2): 173–7PubMedCrossRef
58.
go back to reference Wanner C, Wäckerle B, Boeckle H, et al. Plasma and red blood cell carnitine and carnitine esters during L-carnitine therapy in hemodialysis patients. Am J Clin Nutr 1990; 51(3): 407–10PubMed Wanner C, Wäckerle B, Boeckle H, et al. Plasma and red blood cell carnitine and carnitine esters during L-carnitine therapy in hemodialysis patients. Am J Clin Nutr 1990; 51(3): 407–10PubMed
59.
go back to reference Borum PR. Plasma carnitine compartment and red blood cell carnitine compartment of healthy adults. Am J Clin Nutr 1987; 46(3): 437–41PubMed Borum PR. Plasma carnitine compartment and red blood cell carnitine compartment of healthy adults. Am J Clin Nutr 1987; 46(3): 437–41PubMed
60.
go back to reference Furst P, Gloggler A. Reappraisal of carnitine concentrations in blood. Clin Chem 1987; 33(10): 1956–7PubMed Furst P, Gloggler A. Reappraisal of carnitine concentrations in blood. Clin Chem 1987; 33(10): 1956–7PubMed
61.
go back to reference Mayer G, Graf H, Legenstein E, et al. L-Carnitine substitution in patients on chronic hemodialysis. Nephron 1989; 52(4): 295–9PubMedCrossRef Mayer G, Graf H, Legenstein E, et al. L-Carnitine substitution in patients on chronic hemodialysis. Nephron 1989; 52(4): 295–9PubMedCrossRef
62.
go back to reference Maccari F, Hülsmann WC. (Acyl)carnitine distribution between plasma, erythrocytes, and leukocytes in human blood [letter]. Clin Chem 1989; 35(4): 711PubMed Maccari F, Hülsmann WC. (Acyl)carnitine distribution between plasma, erythrocytes, and leukocytes in human blood [letter]. Clin Chem 1989; 35(4): 711PubMed
63.
go back to reference Savica V, Bellinghieri G, di Stefano C, et al. Plasma and muscle carnitine levels in haemodialysis patients with morphological-ultrastructural examination of muscle samples. Nephron 1983; 35(4): 232–6PubMedCrossRef Savica V, Bellinghieri G, di Stefano C, et al. Plasma and muscle carnitine levels in haemodialysis patients with morphological-ultrastructural examination of muscle samples. Nephron 1983; 35(4): 232–6PubMedCrossRef
64.
go back to reference Leschke M, Rumpf KW, Eisenhauer T, et al. Quantitative assessment of carnitine loss during hemodialysis and hemofiltration. Kidney Int 1983; 24 Suppl. 16: S143–6 Leschke M, Rumpf KW, Eisenhauer T, et al. Quantitative assessment of carnitine loss during hemodialysis and hemofiltration. Kidney Int 1983; 24 Suppl. 16: S143–6
65.
go back to reference Debska-Slizien A, Kawecka A, Wojnarowski K, et al. Correlation between plasma carnitine, muscle carnitine and glycogen levels in maintenance he-modialysis patients. Int J Artif Organs 2000; 23(2): 90–6PubMed Debska-Slizien A, Kawecka A, Wojnarowski K, et al. Correlation between plasma carnitine, muscle carnitine and glycogen levels in maintenance he-modialysis patients. Int J Artif Organs 2000; 23(2): 90–6PubMed
66.
go back to reference Bellinghieri G, Savica V, Mallamace A, et al. Correlation between increased serum and tissue L-carnitine levels and improved muscle symptoms in hemodialyzed patients. Am J Clin Nutr 1983; 38(4): 523–31PubMed Bellinghieri G, Savica V, Mallamace A, et al. Correlation between increased serum and tissue L-carnitine levels and improved muscle symptoms in hemodialyzed patients. Am J Clin Nutr 1983; 38(4): 523–31PubMed
67.
go back to reference Penn D, Schmidt-Sommerfeld E. Carnitine and carnitine esters in plasma and adipose tissue of chronic uremic patients undergoing hemodialysis. Metabolism 1983; 32(8): 806–9PubMedCrossRef Penn D, Schmidt-Sommerfeld E. Carnitine and carnitine esters in plasma and adipose tissue of chronic uremic patients undergoing hemodialysis. Metabolism 1983; 32(8): 806–9PubMedCrossRef
68.
go back to reference Rodriguez-Segade S, Alonso de la Pena C, Paz JM, et al. Carnitine deficiency in haemodialysed patients. Clin Chim Acta 1986; 159(3): 249–56PubMedCrossRef Rodriguez-Segade S, Alonso de la Pena C, Paz JM, et al. Carnitine deficiency in haemodialysed patients. Clin Chim Acta 1986; 159(3): 249–56PubMedCrossRef
69.
go back to reference Rodriguez-Segade S, Alonso de la Pena C, Paz M, et al. Carnitine concentrations in dialysed and undialysed patients with chronic renal insufficiency. Ann Clin Biochem 1986; 23(6): 671–5PubMed Rodriguez-Segade S, Alonso de la Pena C, Paz M, et al. Carnitine concentrations in dialysed and undialysed patients with chronic renal insufficiency. Ann Clin Biochem 1986; 23(6): 671–5PubMed
70.
go back to reference Wanner C, Förstner-Wanner S, Schaeffer G, et al. Serum free carnitine, carnitine esters and lipids in patients on peritoneal dialysis and hemodialysis. Am J Nephrol 1986; 6(3): 206–11PubMedCrossRef Wanner C, Förstner-Wanner S, Schaeffer G, et al. Serum free carnitine, carnitine esters and lipids in patients on peritoneal dialysis and hemodialysis. Am J Nephrol 1986; 6(3): 206–11PubMedCrossRef
71.
go back to reference Wanner C, Förstner-Wanner S, Rössle C, et al. Carnitine metabolism in patients with chronic renal failure: effect of L-carnitine supplementation. Kidney Int 1987; 32 Suppl. 22: S132–5 Wanner C, Förstner-Wanner S, Rössle C, et al. Carnitine metabolism in patients with chronic renal failure: effect of L-carnitine supplementation. Kidney Int 1987; 32 Suppl. 22: S132–5
72.
go back to reference Segre G, Bianchi E, Corsi M, et al. Plasma and urine pharmacokinetics of free and of short-chain carnitine after administration of carnitine in man. Arzneimittelforschung 1988; 38(12): 1830–4PubMed Segre G, Bianchi E, Corsi M, et al. Plasma and urine pharmacokinetics of free and of short-chain carnitine after administration of carnitine in man. Arzneimittelforschung 1988; 38(12): 1830–4PubMed
73.
go back to reference Harper P, Wadström C, Cederblad G. Carnitine measurements in liver, muscle tissue, and blood in normal subjects. Clin Chem 1993; 39(4): 592–9PubMed Harper P, Wadström C, Cederblad G. Carnitine measurements in liver, muscle tissue, and blood in normal subjects. Clin Chem 1993; 39(4): 592–9PubMed
74.
go back to reference Golper TA, Wolfson M, Ahmad S, et al. Multicenter trial of L-carnitine in maintenance hemodialysis patients. I: carnitine concentrations and lipid effects. Kidney Int 1990; 38(5): 904–11PubMedCrossRef Golper TA, Wolfson M, Ahmad S, et al. Multicenter trial of L-carnitine in maintenance hemodialysis patients. I: carnitine concentrations and lipid effects. Kidney Int 1990; 38(5): 904–11PubMedCrossRef
75.
go back to reference van Es A, Henny FC, Kooistra MP, et al. Amelioration of cardiac function by L-carnitine administration in patients on haemodialysis. Contrib Nephrol 1992; 98: 28–35PubMed van Es A, Henny FC, Kooistra MP, et al. Amelioration of cardiac function by L-carnitine administration in patients on haemodialysis. Contrib Nephrol 1992; 98: 28–35PubMed
76.
go back to reference Marzo A, Arrigoni-Martelli E, Mancinelli A, et al. Protein binding of L-carnitine family components. Eur J Drug Metab Pharmacokinet 1991; (Spec. No. 3): 364–8 Marzo A, Arrigoni-Martelli E, Mancinelli A, et al. Protein binding of L-carnitine family components. Eur J Drug Metab Pharmacokinet 1991; (Spec. No. 3): 364–8
77.
go back to reference Cooper MB, Forte CA, Jones DA. Carnitine and acetylcarnitine in red blood cells. Biochim Biophys Acta 1988; 959(2): 100–5PubMedCrossRef Cooper MB, Forte CA, Jones DA. Carnitine and acetylcarnitine in red blood cells. Biochim Biophys Acta 1988; 959(2): 100–5PubMedCrossRef
78.
go back to reference Baker H, Frank O, DeAngelis B, et al. Absorption and excretion of L-carnitine during single or multiple dosings in humans. Int J Vitam Nutr Res 1993; 63(1): 22–6PubMed Baker H, Frank O, DeAngelis B, et al. Absorption and excretion of L-carnitine during single or multiple dosings in humans. Int J Vitam Nutr Res 1993; 63(1): 22–6PubMed
79.
go back to reference Reuter SE, Faull RJ, Ranieri E, et al. Endogenous plasma carnitine pool composition and response to erythropoietin treatment in chronic haemodialysis patients. Nephrol Dial Transplant 2009; 24(3): 990–6PubMedCrossRef Reuter SE, Faull RJ, Ranieri E, et al. Endogenous plasma carnitine pool composition and response to erythropoietin treatment in chronic haemodialysis patients. Nephrol Dial Transplant 2009; 24(3): 990–6PubMedCrossRef
80.
go back to reference Arduini A, Tyurin V, Tyuruna Y, et al. Acyl-trafficking in membrane phospholipid fatty acid turnover: the transfer of fatty acid from the acyl-L-carnitine pool to membrane phospholipids in intact human erythrocytes. Biochem Biophys Res Commun 1992; 187(1): 353–8PubMedCrossRef Arduini A, Tyurin V, Tyuruna Y, et al. Acyl-trafficking in membrane phospholipid fatty acid turnover: the transfer of fatty acid from the acyl-L-carnitine pool to membrane phospholipids in intact human erythrocytes. Biochem Biophys Res Commun 1992; 187(1): 353–8PubMedCrossRef
81.
go back to reference Lentner C, Diem K, Seldrup J. Geigy scientific tables. 8th rev. and enl. ed. Basel: Ciba-Geigy Ltd, 1981 Lentner C, Diem K, Seldrup J. Geigy scientific tables. 8th rev. and enl. ed. Basel: Ciba-Geigy Ltd, 1981
82.
go back to reference Rebouche CJ, Engel AG. Carnitine transport in cultured muscle cells and skin fibroblasts from patients with primary systemic carnitine deficiency. In Vitro 1982; 18(5): 495–500PubMedCrossRef Rebouche CJ, Engel AG. Carnitine transport in cultured muscle cells and skin fibroblasts from patients with primary systemic carnitine deficiency. In Vitro 1982; 18(5): 495–500PubMedCrossRef
83.
go back to reference Willner JH, Ginsburg S, Dimauro S. Active transport of carnitine into skeletal muscle. Neurology 1978; 28(7): 721–4PubMedCrossRef Willner JH, Ginsburg S, Dimauro S. Active transport of carnitine into skeletal muscle. Neurology 1978; 28(7): 721–4PubMedCrossRef
84.
go back to reference Rebouche CJ. Carnitine movement across muscle cell membranes: studies in isolated rat muscle. Biochim Biophys Acta 1977; 471(1): 145–55PubMedCrossRef Rebouche CJ. Carnitine movement across muscle cell membranes: studies in isolated rat muscle. Biochim Biophys Acta 1977; 471(1): 145–55PubMedCrossRef
85.
go back to reference Martinuzzi A, Vergani L, Rosa M, et al. L-Carnitine uptake in differentiating human cultured muscle. Biochim Biophys Acta 1991; 1095(3): 217–22PubMedCrossRef Martinuzzi A, Vergani L, Rosa M, et al. L-Carnitine uptake in differentiating human cultured muscle. Biochim Biophys Acta 1991; 1095(3): 217–22PubMedCrossRef
86.
go back to reference Angelini C, Vergani L, Martinuzzi A. Clinical and biochemical aspects of carnitine deficiency and insufficiency: transport defects and inborn errors of β-oxidation. Crit Rev Clin Lab Sci 1992; 29(3–4): 217–42PubMedCrossRef Angelini C, Vergani L, Martinuzzi A. Clinical and biochemical aspects of carnitine deficiency and insufficiency: transport defects and inborn errors of β-oxidation. Crit Rev Clin Lab Sci 1992; 29(3–4): 217–42PubMedCrossRef
87.
go back to reference Brooks DE, McIntosh JEA. Turnover of carnitine by rat tissues. Biochem J 1975; 148(3): 439–45PubMed Brooks DE, McIntosh JEA. Turnover of carnitine by rat tissues. Biochem J 1975; 148(3): 439–45PubMed
88.
go back to reference de la Grandmaison GL, Clairand I, Durigon M. Organ weight in 684 adult autopsies: new tables for a Caucasoid population. Forensic Sci Int 2001; 119(2): 149–54PubMedCrossRef de la Grandmaison GL, Clairand I, Durigon M. Organ weight in 684 adult autopsies: new tables for a Caucasoid population. Forensic Sci Int 2001; 119(2): 149–54PubMedCrossRef
89.
go back to reference Bøhmer T, Eiklid K, Jonsen J. Carnitine uptake into human heart cells in culture. Biochim Biophys Acta 1977; 465(3): 627–33PubMedCrossRef Bøhmer T, Eiklid K, Jonsen J. Carnitine uptake into human heart cells in culture. Biochim Biophys Acta 1977; 465(3): 627–33PubMedCrossRef
90.
go back to reference Bahl J, Navin T, Manian AA, et al. Carnitine transport in isolated adult rat heart myocytes and the effect of 7,8-diOH chlorpromazine. Circ Res 1981; 48(3): 378–85PubMedCrossRef Bahl J, Navin T, Manian AA, et al. Carnitine transport in isolated adult rat heart myocytes and the effect of 7,8-diOH chlorpromazine. Circ Res 1981; 48(3): 378–85PubMedCrossRef
91.
go back to reference Xuan W, Lamhonwah AM, Librach C, et al. Characterization of organic cation/carnitine transporter family in human sperm. Biochem Biophys Res Commun 2003; 306(1): 121–8PubMedCrossRef Xuan W, Lamhonwah AM, Librach C, et al. Characterization of organic cation/carnitine transporter family in human sperm. Biochem Biophys Res Commun 2003; 306(1): 121–8PubMedCrossRef
92.
go back to reference Tamai I, Ohashi R, Nezu JI, et al. Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem 2000; 275(51): 40064–72PubMedCrossRef Tamai I, Ohashi R, Nezu JI, et al. Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem 2000; 275(51): 40064–72PubMedCrossRef
93.
go back to reference Tamai I, Ohashi R, Nezu J, et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 1998; 273(32): 20378–82PubMedCrossRef Tamai I, Ohashi R, Nezu J, et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 1998; 273(32): 20378–82PubMedCrossRef
94.
go back to reference Wu X, Huang W, Prasad PD, et al. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther 1999; 290(3): 1482–92PubMed Wu X, Huang W, Prasad PD, et al. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther 1999; 290(3): 1482–92PubMed
95.
go back to reference Nakanishi T, Hatanaka T, Huang W, et al. Na+− and Clt—coupled active transport of carnitine by the amino acid transporter ATB(0,+) from mouse colon expressed in HRPE cells and Xenopus oocytes. J Physiol 2001; 532 (Pt 2): 297–304PubMedCrossRef Nakanishi T, Hatanaka T, Huang W, et al. Na+− and Clt—coupled active transport of carnitine by the amino acid transporter ATB(0,+) from mouse colon expressed in HRPE cells and Xenopus oocytes. J Physiol 2001; 532 (Pt 2): 297–304PubMedCrossRef
97.
go back to reference Tsuchida H, Anzai N, Shin HJ, et al. Identification of a novel organic anion transporter mediating carnitine transport in mouse liver and kidney. Cell Physiol Biochem 2010; 25(4–5): 511–22PubMedCrossRef Tsuchida H, Anzai N, Shin HJ, et al. Identification of a novel organic anion transporter mediating carnitine transport in mouse liver and kidney. Cell Physiol Biochem 2010; 25(4–5): 511–22PubMedCrossRef
98.
go back to reference Ahmad S. Carnitine, kidney and renal dialysis. In: Ferrari R, DiMauro S, Sherwood G, editors. L-Carnitine and its role in medicine: from function to therapy. New York: Academic Press, 1992: 381–400 Ahmad S. Carnitine, kidney and renal dialysis. In: Ferrari R, DiMauro S, Sherwood G, editors. L-Carnitine and its role in medicine: from function to therapy. New York: Academic Press, 1992: 381–400
99.
go back to reference Guder WG, Wagner S. The role of the kidney in carnitine metabolism. J Clin Chem Clin Biochem 1990; 28(5): 347–50PubMed Guder WG, Wagner S. The role of the kidney in carnitine metabolism. J Clin Chem Clin Biochem 1990; 28(5): 347–50PubMed
100.
go back to reference Hokland BM, Bremer J. Metabolism and excretion of carnitine and acylcarnitines in the perfused rat kidney. Biochim Biophys Acta 1986; 886(2): 223–30PubMedCrossRef Hokland BM, Bremer J. Metabolism and excretion of carnitine and acylcarnitines in the perfused rat kidney. Biochim Biophys Acta 1986; 886(2): 223–30PubMedCrossRef
101.
go back to reference Suzuki Y, Masumura Y, Kobayashi A, et al. Myocardial carnitine deficiency in chronic heart failure [letter]. Lancet 1982; 1(8263): 116PubMedCrossRef Suzuki Y, Masumura Y, Kobayashi A, et al. Myocardial carnitine deficiency in chronic heart failure [letter]. Lancet 1982; 1(8263): 116PubMedCrossRef
102.
go back to reference Rebouche CJ, Lombard KA, Chenard CA. Renal adaptation to dietary carnitine in humans. Am J Clin Nutr 1993; 58(5): 660–5PubMed Rebouche CJ, Lombard KA, Chenard CA. Renal adaptation to dietary carnitine in humans. Am J Clin Nutr 1993; 58(5): 660–5PubMed
103.
go back to reference Rebouche CJ, Mack DL. Sodium gradient-stimulated transport of L-carnitine into renal brush border membrane vesicles: kinetics, specificity, and regulation by dietary carnitine. Arch Biochem Biophys 1984; 235(2): 393–402PubMedCrossRef Rebouche CJ, Mack DL. Sodium gradient-stimulated transport of L-carnitine into renal brush border membrane vesicles: kinetics, specificity, and regulation by dietary carnitine. Arch Biochem Biophys 1984; 235(2): 393–402PubMedCrossRef
104.
go back to reference Rebouche CJ. Quantitative estimation of absorption and degradation of a carnitine supplement by human adults. Metabolism 1991; 40(12): 1305–10PubMedCrossRef Rebouche CJ. Quantitative estimation of absorption and degradation of a carnitine supplement by human adults. Metabolism 1991; 40(12): 1305–10PubMedCrossRef
105.
go back to reference Harper P, Elwin CE, Cederblad G. Pharmacokinetics of bolus intravenous and oral doses of L-carnitine in healthy subjects. Eur J Clin Pharmacol 1988; 35(1): 69–75PubMedCrossRef Harper P, Elwin CE, Cederblad G. Pharmacokinetics of bolus intravenous and oral doses of L-carnitine in healthy subjects. Eur J Clin Pharmacol 1988; 35(1): 69–75PubMedCrossRef
106.
go back to reference Huth PJ, Shug AL. Properties of carnitine transport in rat kidney cortex slices. Biochim Biophys Acta 1980; 602(3): 621–34PubMedCrossRef Huth PJ, Shug AL. Properties of carnitine transport in rat kidney cortex slices. Biochim Biophys Acta 1980; 602(3): 621–34PubMedCrossRef
107.
go back to reference Brady PS, Ramsey RR, Brady LJ. Regulation of the long-chain carnitine acyltransferases. FASEB J 1993; 7(11): 1039–44PubMed Brady PS, Ramsey RR, Brady LJ. Regulation of the long-chain carnitine acyltransferases. FASEB J 1993; 7(11): 1039–44PubMed
108.
go back to reference Calvani M, Reda E, Arrigoni-Martelli E. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and patho-logical conditions. Basic Res Cardiol 2000; 95(2): 75–83PubMedCrossRef Calvani M, Reda E, Arrigoni-Martelli E. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and patho-logical conditions. Basic Res Cardiol 2000; 95(2): 75–83PubMedCrossRef
109.
go back to reference Chien D, Dean D, Saha AK, et al. Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo. Am J Physiol Endocrinol Metab 2000; 279(242–2): E259–65PubMed Chien D, Dean D, Saha AK, et al. Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo. Am J Physiol Endocrinol Metab 2000; 279(242–2): E259–65PubMed
110.
go back to reference McGarry JD, Stark MJ, Foster DW. Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay. J Biol Chem 1978; 253(22): 8291–3PubMed McGarry JD, Stark MJ, Foster DW. Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay. J Biol Chem 1978; 253(22): 8291–3PubMed
111.
go back to reference Peluso G, Petillo O, Margarucci S, et al. Differential carnitine/acylcarnitine translocase expression defines distinct metabolic signatures in skeletal muscle cells. J Cell Physiol 2005; 203(2): 439–46PubMedCrossRef Peluso G, Petillo O, Margarucci S, et al. Differential carnitine/acylcarnitine translocase expression defines distinct metabolic signatures in skeletal muscle cells. J Cell Physiol 2005; 203(2): 439–46PubMedCrossRef
112.
go back to reference Mancinelli A, Longo A, Shanahan K, et al. Disposition of L-carnitine and acetyl-L-carnitine in the isolated perfused rat kidney. J Pharmacol Exp Ther 1995; 274(3): 1122–8PubMed Mancinelli A, Longo A, Shanahan K, et al. Disposition of L-carnitine and acetyl-L-carnitine in the isolated perfused rat kidney. J Pharmacol Exp Ther 1995; 274(3): 1122–8PubMed
113.
go back to reference de Sousa C, English NR, Stacey TE, et al. Measurement of L-carnitine and acylcarnitines in body fluids and tissues in children and in adults. Clin Chim Acta 1990; 187(3): 317–28PubMedCrossRef de Sousa C, English NR, Stacey TE, et al. Measurement of L-carnitine and acylcarnitines in body fluids and tissues in children and in adults. Clin Chim Acta 1990; 187(3): 317–28PubMedCrossRef
114.
go back to reference Bøhmer T, Rydning A, Solberg HE. Carnitine levels in human serum in health and disease. Clin Chim Acta 1974; 57(1): 55–61PubMedCrossRef Bøhmer T, Rydning A, Solberg HE. Carnitine levels in human serum in health and disease. Clin Chim Acta 1974; 57(1): 55–61PubMedCrossRef
115.
go back to reference Cederblad G, Lindstedt S. A method for the determination of carnitine in the picomole range. Clin Chim Acta 1972; 37: 235–43PubMedCrossRef Cederblad G, Lindstedt S. A method for the determination of carnitine in the picomole range. Clin Chim Acta 1972; 37: 235–43PubMedCrossRef
116.
go back to reference McGarry JD, Foster DW. An improved and simplified radio-isotopic assay for the determination of free and esterified carnitine. J Lipid Res 1976; 17(3): 277–81PubMed McGarry JD, Foster DW. An improved and simplified radio-isotopic assay for the determination of free and esterified carnitine. J Lipid Res 1976; 17(3): 277–81PubMed
117.
go back to reference Parvin R, Pande S. Microdetermination of (−)carnitine and carnitine acetyl-transferase activity. Anal Biochem 1977; 79(1–2): 190–201PubMedCrossRef Parvin R, Pande S. Microdetermination of (−)carnitine and carnitine acetyl-transferase activity. Anal Biochem 1977; 79(1–2): 190–201PubMedCrossRef
118.
go back to reference Pande SV, Caramancion MN. A simple radioisotopic assay of acetylcarnitine and acetyl-CoA at picomolar levels. Anal Biochem 1981; 112(1): 30–8PubMedCrossRef Pande SV, Caramancion MN. A simple radioisotopic assay of acetylcarnitine and acetyl-CoA at picomolar levels. Anal Biochem 1981; 112(1): 30–8PubMedCrossRef
119.
go back to reference Pande SV. Radioisotopic assay of acetylcarnitine and acetyl-CoA. Methods Enzymol 1986; 123: 259–63PubMedCrossRef Pande SV. Radioisotopic assay of acetylcarnitine and acetyl-CoA. Methods Enzymol 1986; 123: 259–63PubMedCrossRef
120.
go back to reference Bieber LL, Kerner J. Short-chain acylcarnitines: identification and quantitation. Methods Enzymol 1986; 123: 264–76PubMedCrossRef Bieber LL, Kerner J. Short-chain acylcarnitines: identification and quantitation. Methods Enzymol 1986; 123: 264–76PubMedCrossRef
121.
go back to reference Kerner J, Bieber LL. A radioisotopic-exchange method for quantification of short-chain (acid-soluble) acylcarnitines. Anal Biochem 1983; 134(2): 459–66PubMedCrossRef Kerner J, Bieber LL. A radioisotopic-exchange method for quantification of short-chain (acid-soluble) acylcarnitines. Anal Biochem 1983; 134(2): 459–66PubMedCrossRef
122.
go back to reference Schmidt-Sommerfeld E, Penn D, Duran M, et al. Detection of inborn errors of fatty acid oxidation from acylcarnitine analysis of plasma and blood spots with the radioisotopic exchange-high-performance liquid chromatographic method. J Pediatr 1993; 122 (5 I): 708–14PubMedCrossRef Schmidt-Sommerfeld E, Penn D, Duran M, et al. Detection of inborn errors of fatty acid oxidation from acylcarnitine analysis of plasma and blood spots with the radioisotopic exchange-high-performance liquid chromatographic method. J Pediatr 1993; 122 (5 I): 708–14PubMedCrossRef
123.
go back to reference Schmidt-Sommerfeld E, Zhang L, Bobrowski PJ, et al. Quantitation of short-and medium-chain acylcarnitines in plasma by radioisotopic exchange/high-performance liquid chromatography. Anal Biochem 1995; 231(1): 27–33PubMedCrossRef Schmidt-Sommerfeld E, Zhang L, Bobrowski PJ, et al. Quantitation of short-and medium-chain acylcarnitines in plasma by radioisotopic exchange/high-performance liquid chromatography. Anal Biochem 1995; 231(1): 27–33PubMedCrossRef
124.
go back to reference Minkler PE, Hoppel CL. Quantification of free carnitine, individual short-and medium-chain acylcarnitines, and total carnitine in plasma by high-performance liquid chromatography. Anal Biochem 1993; 212(2): 510–8PubMedCrossRef Minkler PE, Hoppel CL. Quantification of free carnitine, individual short-and medium-chain acylcarnitines, and total carnitine in plasma by high-performance liquid chromatography. Anal Biochem 1993; 212(2): 510–8PubMedCrossRef
125.
go back to reference Chace DH, di Perna JC, Mitchell BL, et al. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried post-mortem blood specimens collected at autopsy from infants with unexplained cause of death. Clin Chem 2001; 47(7): 1166–82PubMed Chace DH, di Perna JC, Mitchell BL, et al. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried post-mortem blood specimens collected at autopsy from infants with unexplained cause of death. Clin Chem 2001; 47(7): 1166–82PubMed
126.
go back to reference Naylor EW, Chace DH. Automated tandem mass spectrometry for mass newborn screening for disorders in fatty acid, organic acid, and amino acid metabolism. J Child Neurol 1999; 14 Suppl. 1: S4–8PubMed Naylor EW, Chace DH. Automated tandem mass spectrometry for mass newborn screening for disorders in fatty acid, organic acid, and amino acid metabolism. J Child Neurol 1999; 14 Suppl. 1: S4–8PubMed
127.
go back to reference Wiley V, Carpenter K, Wilcken B. Newborn screening with tandem mass spectrometry: 12 months’ experience in NSW Australia. Acta Paediatr Suppl 1999; 88(432): 48–51PubMedCrossRef Wiley V, Carpenter K, Wilcken B. Newborn screening with tandem mass spectrometry: 12 months’ experience in NSW Australia. Acta Paediatr Suppl 1999; 88(432): 48–51PubMedCrossRef
128.
go back to reference Reuter SE, Evans AM, Faull RJ, et al. Impact of haemodialysis on individual endogenous plasma acylcarnitine concentrations in end-stage renal disease. Ann Clin Biochem 2005; 42(5): 387–93PubMedCrossRef Reuter SE, Evans AM, Faull RJ, et al. Impact of haemodialysis on individual endogenous plasma acylcarnitine concentrations in end-stage renal disease. Ann Clin Biochem 2005; 42(5): 387–93PubMedCrossRef
129.
go back to reference Minkler PE, Brass EP, Hiatt WR, et al. Quantification of carnitine, acetylcarnitine, and total carnitine in tissues by high-performance liquid chro-matography: the effect of exercise on carnitine homeostasis in man. Anal Biochem 1995; 231(2): 315–22PubMedCrossRef Minkler PE, Brass EP, Hiatt WR, et al. Quantification of carnitine, acetylcarnitine, and total carnitine in tissues by high-performance liquid chro-matography: the effect of exercise on carnitine homeostasis in man. Anal Biochem 1995; 231(2): 315–22PubMedCrossRef
130.
go back to reference Angsten G, Cederblad G, Meurling S. Reference ranges for muscle carnitine concentration in children. Ann Clin Biochem 2003; 40 (Pt 4): 406–10PubMedCrossRef Angsten G, Cederblad G, Meurling S. Reference ranges for muscle carnitine concentration in children. Ann Clin Biochem 2003; 40 (Pt 4): 406–10PubMedCrossRef
131.
go back to reference Marquis NR, Fritz IB. The distribution of carnitine, acetylcarnitine, and carnitine acetyltransferase in rat tissues. J Biol Chem 1965; 240: 2193–6PubMed Marquis NR, Fritz IB. The distribution of carnitine, acetylcarnitine, and carnitine acetyltransferase in rat tissues. J Biol Chem 1965; 240: 2193–6PubMed
132.
go back to reference Rebouche CJ, Engel AG. Kinetic compartmental analysis of carnitine metabolism in the dog. Arch Biochem Biophys 1983; 220(1): 60–70PubMedCrossRef Rebouche CJ, Engel AG. Kinetic compartmental analysis of carnitine metabolism in the dog. Arch Biochem Biophys 1983; 220(1): 60–70PubMedCrossRef
133.
go back to reference Lai HS, Chen Y, Chen WJ. Carnitine contents in remnant liver, kidney, and skeletal muscle after partial hepatectomy in rats: randomized trial. World J Surg 1998; 22(1): 42–7PubMedCrossRef Lai HS, Chen Y, Chen WJ. Carnitine contents in remnant liver, kidney, and skeletal muscle after partial hepatectomy in rats: randomized trial. World J Surg 1998; 22(1): 42–7PubMedCrossRef
134.
go back to reference Violante S, Ijlst L, van Lenthe H, et al. Carnitine palmitoyltransferase 2: new insights on the substrate specificity and implications for acylcarnitine profiling. Biochem Biophys Acta 2010; 1802(9): 728–32PubMedCrossRef Violante S, Ijlst L, van Lenthe H, et al. Carnitine palmitoyltransferase 2: new insights on the substrate specificity and implications for acylcarnitine profiling. Biochem Biophys Acta 2010; 1802(9): 728–32PubMedCrossRef
135.
go back to reference Bøhmer T, Norum KR, Bremer J. The relative amounts of long-chain acylcarnitine, acetylcarnitine, and free carnitine in organs of rats in different nutritional states and with alloxan diabetes. Biochim Biophys Acta 1966; 125(2): 244–51CrossRef Bøhmer T, Norum KR, Bremer J. The relative amounts of long-chain acylcarnitine, acetylcarnitine, and free carnitine in organs of rats in different nutritional states and with alloxan diabetes. Biochim Biophys Acta 1966; 125(2): 244–51CrossRef
136.
go back to reference Faergeman NJ, Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 1997; 323(1): 1–12PubMed Faergeman NJ, Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 1997; 323(1): 1–12PubMed
137.
go back to reference Sim KG, Hammond J, Wilcken B. Strategies for the diagnosis of mitochondrial fatty acid beta-oxidation disorders. Clin Chim Acta 2002; 323(1–2): 37–58PubMedCrossRef Sim KG, Hammond J, Wilcken B. Strategies for the diagnosis of mitochondrial fatty acid beta-oxidation disorders. Clin Chim Acta 2002; 323(1–2): 37–58PubMedCrossRef
138.
go back to reference Ventura FV, Costa CG, Struys EA, et al. Quantitative acylcarnitine profiling in fibroblasts using [U-13C] palmitic acid: An improved tool for the diag-nosis of fatty acid oxidation defects. Clin Chim Acta 1999; 281(1–2): 1–17PubMedCrossRef Ventura FV, Costa CG, Struys EA, et al. Quantitative acylcarnitine profiling in fibroblasts using [U-13C] palmitic acid: An improved tool for the diag-nosis of fatty acid oxidation defects. Clin Chim Acta 1999; 281(1–2): 1–17PubMedCrossRef
139.
go back to reference Duran M, Mitchell G, de Klerk JBC. Octanoic academia and octanoylcarnitine excretion with dicarboxylic aciduria due to defective oxidation of medium-chain fatty acids. J Pediatr 1985; 107(3): 397–404PubMedCrossRef Duran M, Mitchell G, de Klerk JBC. Octanoic academia and octanoylcarnitine excretion with dicarboxylic aciduria due to defective oxidation of medium-chain fatty acids. J Pediatr 1985; 107(3): 397–404PubMedCrossRef
140.
go back to reference Millington DS, Roe CR, Maltby DA. Characterization of new diagnostic acylcarnitines in patients with β-ketothiolase deficiency and glutaric aciduria type I using mass spectrometry. Biomed Environm Mass Spectrom 1987; 14(12): 711–6CrossRef Millington DS, Roe CR, Maltby DA. Characterization of new diagnostic acylcarnitines in patients with β-ketothiolase deficiency and glutaric aciduria type I using mass spectrometry. Biomed Environm Mass Spectrom 1987; 14(12): 711–6CrossRef
141.
go back to reference Morrow RJ, Rose ME. Isolation of acylcarnitines from urine: a comparison of methods and application to long-chain acyl-CoA dehydrogenase deficiency. Clin Chim Acta 1992; 211(1–2): 73–81PubMedCrossRef Morrow RJ, Rose ME. Isolation of acylcarnitines from urine: a comparison of methods and application to long-chain acyl-CoA dehydrogenase deficiency. Clin Chim Acta 1992; 211(1–2): 73–81PubMedCrossRef
142.
go back to reference Brown NF, Mullur RS, Subramanian I, et al. Molecular characterization of L-CPT I deficiency in six patients: Insights into function of the native enzyme. J Lipid Res 2001; 42(7): 1134–42PubMed Brown NF, Mullur RS, Subramanian I, et al. Molecular characterization of L-CPT I deficiency in six patients: Insights into function of the native enzyme. J Lipid Res 2001; 42(7): 1134–42PubMed
143.
go back to reference Lionetti V, Stanley WC, Recchia FA. Modulating fatty acid oxidation in heart failure. Cardiovasc Res 2011; 90(2): 202–9PubMedCrossRef Lionetti V, Stanley WC, Recchia FA. Modulating fatty acid oxidation in heart failure. Cardiovasc Res 2011; 90(2): 202–9PubMedCrossRef
144.
go back to reference Marquis NR, Francesconi RP, Villee CA. A role for carnitine and long chain acylcarnitine in the regulation of lipogenesis. Adv Enzyme Regul 1968; 6(C): 31–55PubMedCrossRef Marquis NR, Francesconi RP, Villee CA. A role for carnitine and long chain acylcarnitine in the regulation of lipogenesis. Adv Enzyme Regul 1968; 6(C): 31–55PubMedCrossRef
145.
go back to reference Martin DB, Vagelos PR. The mechanism of tricarboxylic acid cycle regulation of fatty acid synthesis. J Biol Chem 1962; 237(6): 1787–92PubMed Martin DB, Vagelos PR. The mechanism of tricarboxylic acid cycle regulation of fatty acid synthesis. J Biol Chem 1962; 237(6): 1787–92PubMed
146.
go back to reference Numa S, Bortz WM, Lynen F. Regulation of fatty acid synthesis at the acetyl-CoA carboxylation step. Adv Enzyme Regul 1965; 3(C): 407–23CrossRef Numa S, Bortz WM, Lynen F. Regulation of fatty acid synthesis at the acetyl-CoA carboxylation step. Adv Enzyme Regul 1965; 3(C): 407–23CrossRef
147.
go back to reference Trumble GE, Smith MA, Winder WW. Purification and characterization of rat skeletal muscle acetyl-CoA carboxylase. Eur J Biochem 1995; 231(1): 192–8PubMedCrossRef Trumble GE, Smith MA, Winder WW. Purification and characterization of rat skeletal muscle acetyl-CoA carboxylase. Eur J Biochem 1995; 231(1): 192–8PubMedCrossRef
148.
go back to reference Vagelos PR, Alberts AW, Martin DB. Studies on the mechanism of activation of acetyl coenzyme A carboxylase by citrate. J Biol Chem 1963; 238(2): 533–40PubMed Vagelos PR, Alberts AW, Martin DB. Studies on the mechanism of activation of acetyl coenzyme A carboxylase by citrate. J Biol Chem 1963; 238(2): 533–40PubMed
149.
go back to reference Scholte HR, Luyt-Houwen IE, Vaandrager-Verduin MH. The role of the carnitine system in myocardial fatty acid oxidation: carnitine deficiency, failing mitochondria and cardiomyopathy. Basic Res Cardiol 1987; 82 Suppl. 1: 63–73PubMed Scholte HR, Luyt-Houwen IE, Vaandrager-Verduin MH. The role of the carnitine system in myocardial fatty acid oxidation: carnitine deficiency, failing mitochondria and cardiomyopathy. Basic Res Cardiol 1987; 82 Suppl. 1: 63–73PubMed
150.
go back to reference Fritz IB, Hsu MP. Studies on the control of fatty acid synthesis. 1: stimulation by (+) palmitylcarnitine of fatty acid synthesis in liver preparations from fed and fasted rats. J Biol Chem 1967; 242(5): 865–72PubMed Fritz IB, Hsu MP. Studies on the control of fatty acid synthesis. 1: stimulation by (+) palmitylcarnitine of fatty acid synthesis in liver preparations from fed and fasted rats. J Biol Chem 1967; 242(5): 865–72PubMed
151.
go back to reference Fritz IB, Arrigoni-Martelli E. Sites of action of carnitine and its derivatives on the cardiovascular system: interactions with membranes. Trends Pharmacol Sci 1993; 14(10): 355–60PubMedCrossRef Fritz IB, Arrigoni-Martelli E. Sites of action of carnitine and its derivatives on the cardiovascular system: interactions with membranes. Trends Pharmacol Sci 1993; 14(10): 355–60PubMedCrossRef
152.
go back to reference Scholte HR, Jennekens FGI, Bouvy JJBJ. Carnitine palmitoyltransferase II deficiency with normal carnitine palmitoyltransferase I in skeletal muscle and leukocytes. J Neurol Sci 1979; 40(1): 39–51PubMedCrossRef Scholte HR, Jennekens FGI, Bouvy JJBJ. Carnitine palmitoyltransferase II deficiency with normal carnitine palmitoyltransferase I in skeletal muscle and leukocytes. J Neurol Sci 1979; 40(1): 39–51PubMedCrossRef
153.
go back to reference Scholte HR, Hülsmann WC, Luyt-Houwen IEM, et al. Carnitine palmitoyltransferase deficiencies. Biochem Soc Trans 1985; 13(4): 643–5PubMed Scholte HR, Hülsmann WC, Luyt-Houwen IEM, et al. Carnitine palmitoyltransferase deficiencies. Biochem Soc Trans 1985; 13(4): 643–5PubMed
154.
go back to reference Echabe T, Requero MA, Goñi FM, et al. An infrared investigation of palmitoyl-coenzyme A and palmitoylcarnitine interaction with perdeuterated-chain phospholipid bilayers. Eur J Biochem 1995; 231(1): 199–203PubMedCrossRef Echabe T, Requero MA, Goñi FM, et al. An infrared investigation of palmitoyl-coenzyme A and palmitoylcarnitine interaction with perdeuterated-chain phospholipid bilayers. Eur J Biochem 1995; 231(1): 199–203PubMedCrossRef
155.
go back to reference Fritz IB, Marquis NR. The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes. Proc Natl Acad Sci U S A 1965; 54(4): 1226–33PubMedCrossRef Fritz IB, Marquis NR. The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes. Proc Natl Acad Sci U S A 1965; 54(4): 1226–33PubMedCrossRef
156.
go back to reference Goñi FM, Requero MA, Alonso A. Palmitoylcarnitine, a surface-active metabolite. FEBS Lett 1996; 390(1): 1–5PubMedCrossRef Goñi FM, Requero MA, Alonso A. Palmitoylcarnitine, a surface-active metabolite. FEBS Lett 1996; 390(1): 1–5PubMedCrossRef
157.
go back to reference Requero MA, Goñi FM, Alonso A. The membrane-perturbing properties of palmitoyl-coenzyme A and palmitoylcarnitine: a comparative study. Bio-chemistry 1995; 34(3): 10400–5 Requero MA, Goñi FM, Alonso A. The membrane-perturbing properties of palmitoyl-coenzyme A and palmitoylcarnitine: a comparative study. Bio-chemistry 1995; 34(3): 10400–5
158.
go back to reference Requero MA, Gonzales M, Goñi FM, et al. Differential penetration of fatty acyl-coenzyme A and fatty acylcarnitines into phospholipid monolayers. FEBS Lett 1995; 357(1): 75–8PubMedCrossRef Requero MA, Gonzales M, Goñi FM, et al. Differential penetration of fatty acyl-coenzyme A and fatty acylcarnitines into phospholipid monolayers. FEBS Lett 1995; 357(1): 75–8PubMedCrossRef
159.
go back to reference Yamada KA, Kanter EM, Newatia A. Long-chain acylcarnitine induces Ca2+ efflux from the sarcoplasmic reticulum. J Cardiovasc Pharmacol 2000; 36(1): 14–21PubMedCrossRef Yamada KA, Kanter EM, Newatia A. Long-chain acylcarnitine induces Ca2+ efflux from the sarcoplasmic reticulum. J Cardiovasc Pharmacol 2000; 36(1): 14–21PubMedCrossRef
160.
go back to reference Kobayashi A, Watanabe H, Fujisawa S, et al. Effects of L-carnitine and palmitoylcarnitine on membrane fluidity of human erythrocytes. Biochim Biophys Acta 1989; 986(1): 83–8PubMedCrossRef Kobayashi A, Watanabe H, Fujisawa S, et al. Effects of L-carnitine and palmitoylcarnitine on membrane fluidity of human erythrocytes. Biochim Biophys Acta 1989; 986(1): 83–8PubMedCrossRef
161.
go back to reference Cho KS, Proulx P. Lysis of erythrocytes by long-chain acyl esters of carnitine. Biochim Biophys Acta 1969; 193(1): 30–5PubMedCrossRef Cho KS, Proulx P. Lysis of erythrocytes by long-chain acyl esters of carnitine. Biochim Biophys Acta 1969; 193(1): 30–5PubMedCrossRef
162.
go back to reference Cho KS, Proulx P. Studies on the mechanism of hemolysis by acyl carnitines, lysolecithins and acyl cholines. Biochim Biophys Acta 1971; 225(2): 214–23PubMedCrossRef Cho KS, Proulx P. Studies on the mechanism of hemolysis by acyl carnitines, lysolecithins and acyl cholines. Biochim Biophys Acta 1971; 225(2): 214–23PubMedCrossRef
163.
go back to reference Cho KS, Proulx P. Interactions of acyl carnitines and other lysins with erythrocytes and reconstituted erythrocyte lipoproteins. Biochim Biophys Acta 1973; 318(1): 50–60PubMedCrossRef Cho KS, Proulx P. Interactions of acyl carnitines and other lysins with erythrocytes and reconstituted erythrocyte lipoproteins. Biochim Biophys Acta 1973; 318(1): 50–60PubMedCrossRef
164.
go back to reference Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and con-tributes to insulin resistance. Cell Metab 2009; 9(4): 311–26PubMedCrossRef Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and con-tributes to insulin resistance. Cell Metab 2009; 9(4): 311–26PubMedCrossRef
165.
go back to reference Adams SH, Hoppel CL, Lok KH, et al. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid β-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr 2009; 139(6): 1073–81PubMedCrossRef Adams SH, Hoppel CL, Lok KH, et al. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid β-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr 2009; 139(6): 1073–81PubMedCrossRef
166.
go back to reference Huffman KM, Shah SH, Stevens RD, et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009; 32(9): 1678–83PubMedCrossRef Huffman KM, Shah SH, Stevens RD, et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009; 32(9): 1678–83PubMedCrossRef
167.
go back to reference Koves TR, Ussher JR, Noland RC, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008; 7(1): 45–56PubMedCrossRef Koves TR, Ussher JR, Noland RC, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008; 7(1): 45–56PubMedCrossRef
168.
go back to reference Muoio DM, Newgard CB. Obesity-related derangements in metabolic regulation. Annu Rev Biochem 2006; 75: 367–401PubMedCrossRef Muoio DM, Newgard CB. Obesity-related derangements in metabolic regulation. Annu Rev Biochem 2006; 75: 367–401PubMedCrossRef
169.
go back to reference Muoio DM, Newgard CB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9(3): 193–205PubMedCrossRef Muoio DM, Newgard CB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9(3): 193–205PubMedCrossRef
170.
go back to reference Noland RC, Koves TR, Seiler SE, et al. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem 2009; 284(34): 22840–52PubMedCrossRef Noland RC, Koves TR, Seiler SE, et al. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem 2009; 284(34): 22840–52PubMedCrossRef
171.
go back to reference Shah SH, Hauser ER, Bain JR, et al. High heritability of metabolomic profiles in families burdened with premature cardiovascular disease. Mol Syst Biol 2009; 5(258): 1–7 Shah SH, Hauser ER, Bain JR, et al. High heritability of metabolomic profiles in families burdened with premature cardiovascular disease. Mol Syst Biol 2009; 5(258): 1–7
172.
go back to reference Tai ES, Tan ML, Stevens RD, et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010; 53: 757–67PubMedCrossRef Tai ES, Tan ML, Stevens RD, et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010; 53: 757–67PubMedCrossRef
173.
go back to reference Redman LM, Huffman KM, Landerman LR, et al. Effect of caloric restriction with and without exercise on metabolic intermediates in nonobese men and women. J Clin Endocrinol Metab 2011; 96(2): E312–21PubMedCrossRef Redman LM, Huffman KM, Landerman LR, et al. Effect of caloric restriction with and without exercise on metabolic intermediates in nonobese men and women. J Clin Endocrinol Metab 2011; 96(2): E312–21PubMedCrossRef
174.
go back to reference Lum H, Sloane R, Huffman KM, et al. Plasma acylcarnitines are associated with physical performance in elderly men. J Gerontol A Biol Sci Med Sci 2011; 66A(5): 548–53CrossRef Lum H, Sloane R, Huffman KM, et al. Plasma acylcarnitines are associated with physical performance in elderly men. J Gerontol A Biol Sci Med Sci 2011; 66A(5): 548–53CrossRef
175.
go back to reference Ferrari R, Merli E, Cicchitelli G, et al. Therapeutic effects of L-carnitine and propionyl-L-carnitine on cardiovascular diseases: a review. Ann N Y Acad Sci 2004; 1033:79–91PubMedCrossRef Ferrari R, Merli E, Cicchitelli G, et al. Therapeutic effects of L-carnitine and propionyl-L-carnitine on cardiovascular diseases: a review. Ann N Y Acad Sci 2004; 1033:79–91PubMedCrossRef
176.
go back to reference Palacios HH, Yendluri BB, Parvathaneni K, et al. Mitochondrion-specific antioxidants as drug treatments for Alzheimer disease. CNS Neurol Disord Drug Targets 2011; 10(2): 149–62PubMedCrossRef Palacios HH, Yendluri BB, Parvathaneni K, et al. Mitochondrion-specific antioxidants as drug treatments for Alzheimer disease. CNS Neurol Disord Drug Targets 2011; 10(2): 149–62PubMedCrossRef
177.
go back to reference Rosca MG, Lemieux H, Hoppel CL. Mitochondria in the elderly: Is acetylcarnitine a rejuvenator? Adv Drug Deliv Rev 2009; 61(14): 1332–42PubMedCrossRef Rosca MG, Lemieux H, Hoppel CL. Mitochondria in the elderly: Is acetylcarnitine a rejuvenator? Adv Drug Deliv Rev 2009; 61(14): 1332–42PubMedCrossRef
178.
go back to reference Goa KL, Brogden RN. L-Carnitine: a preliminary review of its pharmacokinetics, and its therapeutic use in ischaemic cardiac disease and primary and secondary carnitine deficiencies in relationship to its role in fatty acid metabolism. Drugs 1987; 34(1): 1–24PubMedCrossRef Goa KL, Brogden RN. L-Carnitine: a preliminary review of its pharmacokinetics, and its therapeutic use in ischaemic cardiac disease and primary and secondary carnitine deficiencies in relationship to its role in fatty acid metabolism. Drugs 1987; 34(1): 1–24PubMedCrossRef
179.
go back to reference Famularo G, Matricardi F, Nucera E, et al. Carnitine deficiency: primary and secondary syndromes. In: de Simone C, Famularo G, editors. Carnitine today. Austin (TX): RG Landes Company, 1997: 119–61CrossRef Famularo G, Matricardi F, Nucera E, et al. Carnitine deficiency: primary and secondary syndromes. In: de Simone C, Famularo G, editors. Carnitine today. Austin (TX): RG Landes Company, 1997: 119–61CrossRef
180.
go back to reference Rebouche CJ, Engel AG. Carnitine metabolism and deficiency syndromes. Mayo Clin Proc 1983; 58(8): 533–40PubMed Rebouche CJ, Engel AG. Carnitine metabolism and deficiency syndromes. Mayo Clin Proc 1983; 58(8): 533–40PubMed
181.
go back to reference Rodrigues Pereira R, Scholte HR, Luyt-Houwen IE, et al. Cardiomyopathy associated with carnitine loss in kidneys and small intestine. Eur J Pediatr 1988; 148: 193–7CrossRef Rodrigues Pereira R, Scholte HR, Luyt-Houwen IE, et al. Cardiomyopathy associated with carnitine loss in kidneys and small intestine. Eur J Pediatr 1988; 148: 193–7CrossRef
182.
go back to reference Vaz FM, Scholte HR, Ruiter J, et al. Identification of two novel mutations in OCTN2 of three patients with systemic carnitine deficiency. Hum Genet 1999; 105(1–2): 157–61PubMedCrossRef Vaz FM, Scholte HR, Ruiter J, et al. Identification of two novel mutations in OCTN2 of three patients with systemic carnitine deficiency. Hum Genet 1999; 105(1–2): 157–61PubMedCrossRef
183.
go back to reference Treem WR, Stanley CA, Finegold DN, et al. Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle, and fibroblasts. N Engl J Med 1988; 319(20): 1331–6PubMedCrossRef Treem WR, Stanley CA, Finegold DN, et al. Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle, and fibroblasts. N Engl J Med 1988; 319(20): 1331–6PubMedCrossRef
184.
go back to reference Tang NL, Ganapathy V, Wu X, et al. Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency. Hum Mol Genet 1999; 8(4): 655–60PubMedCrossRef Tang NL, Ganapathy V, Wu X, et al. Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency. Hum Mol Genet 1999; 8(4): 655–60PubMedCrossRef
185.
go back to reference Nezu J, Tamai I, Oku A, et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet 1999; 21(1): 91–4PubMedCrossRef Nezu J, Tamai I, Oku A, et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet 1999; 21(1): 91–4PubMedCrossRef
186.
go back to reference Wang Y, Ye J, Ganapathy V, et al. Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc Natl Acad Sci U S A 1999; 96(5): 2356–60PubMedCrossRef Wang Y, Ye J, Ganapathy V, et al. Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc Natl Acad Sci U S A 1999; 96(5): 2356–60PubMedCrossRef
187.
go back to reference Stanley CA, DeLeeuw S, Coates PM, et al. Chronic cardiomyopathy and weakness or acute coma in children with a defect in carnitine uptake. Ann Neurol 1991; 30(5): 709–16PubMedCrossRef Stanley CA, DeLeeuw S, Coates PM, et al. Chronic cardiomyopathy and weakness or acute coma in children with a defect in carnitine uptake. Ann Neurol 1991; 30(5): 709–16PubMedCrossRef
188.
go back to reference Waber LJ, Valle D, Neill C, et al. Carnitine deficiency presenting as familial cardiomyopathy: a treatable defect in carnitine transport. J Pediatr 1982; 101(5): 700–5PubMedCrossRef Waber LJ, Valle D, Neill C, et al. Carnitine deficiency presenting as familial cardiomyopathy: a treatable defect in carnitine transport. J Pediatr 1982; 101(5): 700–5PubMedCrossRef
189.
go back to reference Shapira Y, Glick B, Harel S, et al. Infantile idiopathic myopathic carnitine deficiency: treatment with L-carnitine. Pediatr Neurol 1993; 9(1): 35–8PubMedCrossRef Shapira Y, Glick B, Harel S, et al. Infantile idiopathic myopathic carnitine deficiency: treatment with L-carnitine. Pediatr Neurol 1993; 9(1): 35–8PubMedCrossRef
190.
go back to reference Tanphaichitr V, Leelahagul P. Carnitine metabolism and human carnitine deficiency. Nutrition 1993; 9(3): 246–54PubMed Tanphaichitr V, Leelahagul P. Carnitine metabolism and human carnitine deficiency. Nutrition 1993; 9(3): 246–54PubMed
191.
go back to reference Turnbull DM, Bartlett K, Stevens DL, et al. Short-chain acyl-CoA dehydrogenase deficiency associated with a lipid-storage myopathy and secondary carnitine deficiency. N Engl J Med 1984; 311(19): 1232–6PubMedCrossRef Turnbull DM, Bartlett K, Stevens DL, et al. Short-chain acyl-CoA dehydrogenase deficiency associated with a lipid-storage myopathy and secondary carnitine deficiency. N Engl J Med 1984; 311(19): 1232–6PubMedCrossRef
192.
go back to reference Guarnieri G, Toigo G, Crapesi L, et al. Carnitine metabolism in chronic renal failure. Kidney Int 1987; 22 Suppl. 22: S116–27 Guarnieri G, Toigo G, Crapesi L, et al. Carnitine metabolism in chronic renal failure. Kidney Int 1987; 22 Suppl. 22: S116–27
193.
go back to reference Evans AM. Dialysis-related carnitine disorder and levocarnitine pharmacology. Am J Kidney Dis 2003; 41 (4 Suppl. 4): S13–26PubMedCrossRef Evans AM. Dialysis-related carnitine disorder and levocarnitine pharmacology. Am J Kidney Dis 2003; 41 (4 Suppl. 4): S13–26PubMedCrossRef
194.
go back to reference Rudman D, Sewell CW, Ansley JD. Deficiency of carnitine in cachectic cirrhotic patients. J Clin Invest 1977; 60(3): 716–23PubMedCrossRef Rudman D, Sewell CW, Ansley JD. Deficiency of carnitine in cachectic cirrhotic patients. J Clin Invest 1977; 60(3): 716–23PubMedCrossRef
195.
196.
go back to reference Khan L, Bamji MS. Plasma carnitine levels in children with protein-calorie malnutrition before and after rehabilitation. Clin Chim Acta 1977; 75(1): 163–6PubMedCrossRef Khan L, Bamji MS. Plasma carnitine levels in children with protein-calorie malnutrition before and after rehabilitation. Clin Chim Acta 1977; 75(1): 163–6PubMedCrossRef
197.
go back to reference de Simone C, Tzantzoglou S, Jirillo E, et al. L-Carnitine deficiency in AIDS patients. AIDS 1992; 6(2): 203–5PubMedCrossRef de Simone C, Tzantzoglou S, Jirillo E, et al. L-Carnitine deficiency in AIDS patients. AIDS 1992; 6(2): 203–5PubMedCrossRef
198.
go back to reference Scholte HR, Stinis JT, Jennekens FG. Low carnitine levels in serum of pregnant women. N Engl J Med 1978; 299(19): 1079–80PubMed Scholte HR, Stinis JT, Jennekens FG. Low carnitine levels in serum of pregnant women. N Engl J Med 1978; 299(19): 1079–80PubMed
199.
go back to reference Bernardini I, Rizzo WB, Dalakas M, et al. Plasma and muscle free carnitine deficiency due to renal Fanconi syndrome. J Clin Invest 1985; 75(4): 1124–30PubMedCrossRef Bernardini I, Rizzo WB, Dalakas M, et al. Plasma and muscle free carnitine deficiency due to renal Fanconi syndrome. J Clin Invest 1985; 75(4): 1124–30PubMedCrossRef
200.
go back to reference Filipek PA, Juranek J, Nguyen MT, et al. Relative carnitine deficiency in autism. J Autism Dev Disord 2004; 34(6): 615–23PubMedCrossRef Filipek PA, Juranek J, Nguyen MT, et al. Relative carnitine deficiency in autism. J Autism Dev Disord 2004; 34(6): 615–23PubMedCrossRef
201.
go back to reference Pepine CJ. The therapeutic potential of carnitine in cardiovascular disorders. Clin Ther 1991; 13(1): 2–21PubMed Pepine CJ. The therapeutic potential of carnitine in cardiovascular disorders. Clin Ther 1991; 13(1): 2–21PubMed
202.
go back to reference Kelly GS. L-Carnitine: therapeutic applications of a conditionally-essential amino acid. Altern Med Rev 1998; 3(5): 345–60PubMed Kelly GS. L-Carnitine: therapeutic applications of a conditionally-essential amino acid. Altern Med Rev 1998; 3(5): 345–60PubMed
203.
go back to reference Reuter SE, Evans AM. Long-chain acylcarnitine deficiency in patients with chronic fatigue syndrome: potential involvement of altered carnitine palmitoyltransferase-I activity. J Intern Med 2011; 270(1): 76–84PubMedCrossRef Reuter SE, Evans AM. Long-chain acylcarnitine deficiency in patients with chronic fatigue syndrome: potential involvement of altered carnitine palmitoyltransferase-I activity. J Intern Med 2011; 270(1): 76–84PubMedCrossRef
204.
go back to reference Passeri M, Iannuccelli M, Ciotti G, et al. Mental impairment in aging: selection of patients, methods of evaluation and therapeutic possibilities of acetyl-L-carnitine. Int J Clin Pharmacol Res 1988; 8(5): 367–76PubMed Passeri M, Iannuccelli M, Ciotti G, et al. Mental impairment in aging: selection of patients, methods of evaluation and therapeutic possibilities of acetyl-L-carnitine. Int J Clin Pharmacol Res 1988; 8(5): 367–76PubMed
205.
go back to reference Passeri M, Cucinotta D, Bonati PA, et al. Acetyl-L-carnitine in the treatment of mildly demented elderly patients. Int J Clin Pharmacol Res 1990; 10(1–2): 75–9PubMed Passeri M, Cucinotta D, Bonati PA, et al. Acetyl-L-carnitine in the treatment of mildly demented elderly patients. Int J Clin Pharmacol Res 1990; 10(1–2): 75–9PubMed
206.
go back to reference Montgomery SA, Thal LJ, Amrein R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol 2003; 18(2): 61–71PubMedCrossRef Montgomery SA, Thal LJ, Amrein R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol 2003; 18(2): 61–71PubMedCrossRef
208.
go back to reference Brevetti G, Perna S, Sabba C, et al. Effect of propionyl-L-carnitine on quality of life in intermittent claudication. Am J Cardiol 1997; 79(6): 777–80PubMedCrossRef Brevetti G, Perna S, Sabba C, et al. Effect of propionyl-L-carnitine on quality of life in intermittent claudication. Am J Cardiol 1997; 79(6): 777–80PubMedCrossRef
209.
go back to reference Rossini M, di Munno O, Valentini G, et al. Double-blind, multicenter trial comparing acetyl L-carnitine with placebo in the treatment of fibromyalgia patients. Clin Exp Rheumatol 2007; 25(2): 182–8PubMed Rossini M, di Munno O, Valentini G, et al. Double-blind, multicenter trial comparing acetyl L-carnitine with placebo in the treatment of fibromyalgia patients. Clin Exp Rheumatol 2007; 25(2): 182–8PubMed
210.
go back to reference Vermeulen RCW, Scholte HR. Exploratory open label, randomized study of acetyl- and propionylcarnitine in chronic fatigue syndrome. Psychosom Med 2004; 66(2): 276–82PubMedCrossRef Vermeulen RCW, Scholte HR. Exploratory open label, randomized study of acetyl- and propionylcarnitine in chronic fatigue syndrome. Psychosom Med 2004; 66(2): 276–82PubMedCrossRef
211.
go back to reference Ahluwalia NS, Bernad NG. A review of valproic acid-induced carnitine deficiency and replacement. J Pharm Technol 2001; 17(3): 81–3 Ahluwalia NS, Bernad NG. A review of valproic acid-induced carnitine deficiency and replacement. J Pharm Technol 2001; 17(3): 81–3
212.
go back to reference Ohashi R, Tamai I, Yabuuchi H, et al. Na+-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther 1999; 291(2): 778–84PubMed Ohashi R, Tamai I, Yabuuchi H, et al. Na+-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther 1999; 291(2): 778–84PubMed
213.
go back to reference Murakami K, Sugimoto T, Woo M, et al. Effect of L-carnitine supplementation on acute valproate intoxication. Epilepsia 1996; 37(7): 687–9PubMedCrossRef Murakami K, Sugimoto T, Woo M, et al. Effect of L-carnitine supplementation on acute valproate intoxication. Epilepsia 1996; 37(7): 687–9PubMedCrossRef
214.
go back to reference Wanner C, Hörl WH. Carnitine abnormalities in patients with renal insufficiency: pathophysiological and therapeutical aspects. Nephron 1988; 50(2): 89–102PubMedCrossRef Wanner C, Hörl WH. Carnitine abnormalities in patients with renal insufficiency: pathophysiological and therapeutical aspects. Nephron 1988; 50(2): 89–102PubMedCrossRef
215.
go back to reference Bartel LL, Hussey JL, Shrago E. Perturbation of serum carnitine levels in human adults by chronic renal disease and dialysis therapy. Am J Clin Nutr 1981; 34(7): 1314–20PubMed Bartel LL, Hussey JL, Shrago E. Perturbation of serum carnitine levels in human adults by chronic renal disease and dialysis therapy. Am J Clin Nutr 1981; 34(7): 1314–20PubMed
216.
217.
go back to reference Bøhmer T, Bergrem H, Eiklid K. Carnitine deficiency induced during intermittent haemodialysis for renal failure. Lancet 1978; 1(8056): 126–8PubMedCrossRef Bøhmer T, Bergrem H, Eiklid K. Carnitine deficiency induced during intermittent haemodialysis for renal failure. Lancet 1978; 1(8056): 126–8PubMedCrossRef
218.
go back to reference Evans AM, Faull R, Fornasini G, et al. Pharmacokinetics of L-carnitine in patients with end-stage renal disease undergoing long-term hemodialysis. Clin Pharmacol Ther 2000; 68(3): 238–49PubMedCrossRef Evans AM, Faull R, Fornasini G, et al. Pharmacokinetics of L-carnitine in patients with end-stage renal disease undergoing long-term hemodialysis. Clin Pharmacol Ther 2000; 68(3): 238–49PubMedCrossRef
219.
go back to reference Evans AM, Faull RJ, Nation RL, et al. Impact of hemodialysis on endogenous plasma and muscle carnitine levels in patients with end-stage renal disease. Kidney Int 2004; 66(4): 1527–34PubMedCrossRef Evans AM, Faull RJ, Nation RL, et al. Impact of hemodialysis on endogenous plasma and muscle carnitine levels in patients with end-stage renal disease. Kidney Int 2004; 66(4): 1527–34PubMedCrossRef
220.
go back to reference Sahajwalla CG, Helton ED, Purich ED, et al. Multiple-dose pharmacokinetics and bioequivalence of L-carnitine 330-mg tablet versus 1-g chewable tablet versus enteral solution in healthy adult male volunteers. J Pharm Sci 1995; 84(5): 627–33PubMedCrossRef Sahajwalla CG, Helton ED, Purich ED, et al. Multiple-dose pharmacokinetics and bioequivalence of L-carnitine 330-mg tablet versus 1-g chewable tablet versus enteral solution in healthy adult male volunteers. J Pharm Sci 1995; 84(5): 627–33PubMedCrossRef
221.
go back to reference Rizza V, Lorefice R, Rizza N, et al. Pharmacokinetics of L-carnitine in human subjects. In: Ferrari R, DiMauro S, Sherwood G, editors. L-Carnitine and its role in medicine: From function to therapy. London: Academic Press Limited, 1992: 63–77 Rizza V, Lorefice R, Rizza N, et al. Pharmacokinetics of L-carnitine in human subjects. In: Ferrari R, DiMauro S, Sherwood G, editors. L-Carnitine and its role in medicine: From function to therapy. London: Academic Press Limited, 1992: 63–77
222.
go back to reference Cao Y, Wang YX, Liu CJ, et al. Comparison of pharmacokinetics of L-carnitine, acetyl-L-carnitine and propionyl-L-carnitine after single oral administration of L-carnitine in healthy volunteers. Clin Invest Med 2009; 32(1): E13–9PubMed Cao Y, Wang YX, Liu CJ, et al. Comparison of pharmacokinetics of L-carnitine, acetyl-L-carnitine and propionyl-L-carnitine after single oral administration of L-carnitine in healthy volunteers. Clin Invest Med 2009; 32(1): E13–9PubMed
223.
go back to reference Bain MA, Milne RW, Evans AM. Disposition and metabolite kinetics of oral L-carnitine in humans. J Clin Pharmacol 2006; 46(10): 1163–70PubMedCrossRef Bain MA, Milne RW, Evans AM. Disposition and metabolite kinetics of oral L-carnitine in humans. J Clin Pharmacol 2006; 46(10): 1163–70PubMedCrossRef
224.
go back to reference Bach AC, Schirardin H, Sihr MO, et al. Free and total carnitine in human serum after oral ingestion of L-carnitine. Diabete Metab 1983; 9(2): 121–4PubMed Bach AC, Schirardin H, Sihr MO, et al. Free and total carnitine in human serum after oral ingestion of L-carnitine. Diabete Metab 1983; 9(2): 121–4PubMed
225.
go back to reference Pace S, Longo A, Toon S, et al. Pharmacokinetics of propionyl-L-carnitine in humans: evidence for saturable tubular reabsorption. Br J Clin Pharmacol 2000; 50(5): 441–8PubMedCrossRef Pace S, Longo A, Toon S, et al. Pharmacokinetics of propionyl-L-carnitine in humans: evidence for saturable tubular reabsorption. Br J Clin Pharmacol 2000; 50(5): 441–8PubMedCrossRef
226.
go back to reference Kwon OS, Chung YB. HPLC determination and pharmacokinetics of endogenous acetyl-L-carnitine (ALC) in human volunteers orally administered a single dose of ALC. Arch Pharm Res 2004; 27(6): 676–81PubMedCrossRef Kwon OS, Chung YB. HPLC determination and pharmacokinetics of endogenous acetyl-L-carnitine (ALC) in human volunteers orally administered a single dose of ALC. Arch Pharm Res 2004; 27(6): 676–81PubMedCrossRef
227.
go back to reference Mancinelli A, Longo A, Nation RL, et al. Disposition of L-carnitine and its short-chain esters, acetyl-L-carnitine and propionyl-L-carnitine, in the rat isolated perfused liver. Drug Metab Dispos 2000; 28(12): 1401–4PubMed Mancinelli A, Longo A, Nation RL, et al. Disposition of L-carnitine and its short-chain esters, acetyl-L-carnitine and propionyl-L-carnitine, in the rat isolated perfused liver. Drug Metab Dispos 2000; 28(12): 1401–4PubMed
228.
go back to reference Sahajwalla CG, Helton ED, Purich ED, et al. Comparison of L-carnitine pharmacokinetics with and without baseline correction following administration of single 20-mg/kg intravenous dose. J Pharm Sci 1995; 84(5): 634–9PubMedCrossRef Sahajwalla CG, Helton ED, Purich ED, et al. Comparison of L-carnitine pharmacokinetics with and without baseline correction following administration of single 20-mg/kg intravenous dose. J Pharm Sci 1995; 84(5): 634–9PubMedCrossRef
229.
go back to reference Uematsu T, Itaya T, Nishimoto M, et al. Pharmacokinetics and safety of L-carnitine infused i.v. in healthy subjects. Eur J Clin Pharmacol 1988; 34(2): 213–6PubMedCrossRef Uematsu T, Itaya T, Nishimoto M, et al. Pharmacokinetics and safety of L-carnitine infused i.v. in healthy subjects. Eur J Clin Pharmacol 1988; 34(2): 213–6PubMedCrossRef
230.
go back to reference Rebouche CJ, Engel AG. Kinetic compartmental analysis of carnitine metabolism in the human carnitine deficiency syndromes: evidence for alterations in tissue carnitine transport. J Clin Invest 1984; 73(3): 857–67PubMedCrossRef Rebouche CJ, Engel AG. Kinetic compartmental analysis of carnitine metabolism in the human carnitine deficiency syndromes: evidence for alterations in tissue carnitine transport. J Clin Invest 1984; 73(3): 857–67PubMedCrossRef
231.
go back to reference Gloggler A, Bulla M, Furst P. Kinetics of intravenously administered carnitine in haemodialysed children. J Pharm Biomed Anal 1990; 8(5): 411–4PubMedCrossRef Gloggler A, Bulla M, Furst P. Kinetics of intravenously administered carnitine in haemodialysed children. J Pharm Biomed Anal 1990; 8(5): 411–4PubMedCrossRef
232.
go back to reference Vernez L, Dickenmann M, Steiger J, et al. Effect of L-carnitine on the kinetics of carnitine, acylcarnitines and butyrobetaine in long-term haemodialysis. Nephrol Dial Transplant 2006; 21(2): 450–8PubMedCrossRef Vernez L, Dickenmann M, Steiger J, et al. Effect of L-carnitine on the kinetics of carnitine, acylcarnitines and butyrobetaine in long-term haemodialysis. Nephrol Dial Transplant 2006; 21(2): 450–8PubMedCrossRef
233.
go back to reference Fornasini G, Upton RN, Evans AM. A pharmacokinetic model for L-carnitine in patients receiving haemodialysis. Br J Clin Pharmacol 2007; 64(3): 335–45PubMedCrossRef Fornasini G, Upton RN, Evans AM. A pharmacokinetic model for L-carnitine in patients receiving haemodialysis. Br J Clin Pharmacol 2007; 64(3): 335–45PubMedCrossRef
Metadata
Title
Carnitine and Acylcarnitines
Pharmacokinetic, Pharmacological and Clinical Aspects
Authors
Dr Stephanie E. Reuter
Allan M. Evans
Publication date
01-09-2012
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 9/2012
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/BF03261931

Other articles of this Issue 9/2012

Clinical Pharmacokinetics 9/2012 Go to the issue