Skip to main content
Top
Published in: BMC Oral Health 1/2024

Open Access 01-12-2024 | Oral Cancer | Research

Survival estimation of oral cancer using fuzzy deep learning

Authors: Rachasak Somyanonthanakul, Kritsasith Warin, Sitthi Chaowchuen, Suthin Jinaporntham, Wararit Panichkitkosolkul, Siriwan Suebnukarn

Published in: BMC Oral Health | Issue 1/2024

Login to get access

Abstract

Background

Oral cancer is a deadly disease and a major cause of morbidity and mortality worldwide. The purpose of this study was to develop a fuzzy deep learning (FDL)-based model to estimate the survival time based on clinicopathologic data of oral cancer.

Methods

Electronic medical records of 581 oral squamous cell carcinoma (OSCC) patients, treated with surgery with or without radiochemotherapy, were collected retrospectively from the Oral and Maxillofacial Surgery Clinic and the Regional Cancer Center from 2011 to 2019. The deep learning (DL) model was trained to classify survival time classes based on clinicopathologic data. Fuzzy logic was integrated into the DL model and trained to create FDL-based models to estimate the survival time classes.

Results

The performance of the models was evaluated on a test dataset. The performance of the DL and FDL models for estimation of survival time achieved an accuracy of 0.74 and 0.97 and an area under the receiver operating characteristic (AUC) curve of 0.84 to 1.00 and 1.00, respectively.

Conclusions

The integration of fuzzy logic into DL models could improve the accuracy to estimate survival time based on clinicopathologic data of oral cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
2.
go back to reference Klongnoi B, Sresumatchai V, Clypuing H, Wisutthajaree A, Pankam J, Srimaneekarn N, et al. Histopathological and risk factor analyses of oral potentially malignant disorders and oral cancer in a proactive screening in northeastern Thailand. BMC Oral Health. 2022;22(1):613.CrossRefPubMedPubMedCentral Klongnoi B, Sresumatchai V, Clypuing H, Wisutthajaree A, Pankam J, Srimaneekarn N, et al. Histopathological and risk factor analyses of oral potentially malignant disorders and oral cancer in a proactive screening in northeastern Thailand. BMC Oral Health. 2022;22(1):613.CrossRefPubMedPubMedCentral
3.
go back to reference Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(4–5):309–16.CrossRefPubMed Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(4–5):309–16.CrossRefPubMed
4.
go back to reference Amin MB, Edge S, Greene FL, Schilsky RL, Byrd DR, Gaspar LE, et al. AJCC Cancer Staging Manual. 8th ed: Springer Nature; 2017. Amin MB, Edge S, Greene FL, Schilsky RL, Byrd DR, Gaspar LE, et al. AJCC Cancer Staging Manual. 8th ed: Springer Nature; 2017.
5.
go back to reference Warnakulasuriya S. Oral potentially malignant disorders: a comprehensive review on clinical aspects and management. Oral Oncol. 2020;102:104550.CrossRefPubMed Warnakulasuriya S. Oral potentially malignant disorders: a comprehensive review on clinical aspects and management. Oral Oncol. 2020;102:104550.CrossRefPubMed
6.
go back to reference Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform. 2017;18(5):851–69.PubMed Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform. 2017;18(5):851–69.PubMed
7.
go back to reference Warin K, Limprasert W, Suebnukarn S, Jinaporntham S, Jantana P, Vicharueang S. AI-based analysis of oral lesions using novel deep convolutional neural networks for early detection of oral cancer. PLoS One. 2022;17(8):e0273508.CrossRefPubMedPubMedCentral Warin K, Limprasert W, Suebnukarn S, Jinaporntham S, Jantana P, Vicharueang S. AI-based analysis of oral lesions using novel deep convolutional neural networks for early detection of oral cancer. PLoS One. 2022;17(8):e0273508.CrossRefPubMedPubMedCentral
8.
go back to reference Tseng WT, Chiang WF, Liu SY, Roan J, Lin CN. The application of data mining techniques to oral cancer prognosis. J Med Syst. 2015;39(5):59.CrossRefPubMed Tseng WT, Chiang WF, Liu SY, Roan J, Lin CN. The application of data mining techniques to oral cancer prognosis. J Med Syst. 2015;39(5):59.CrossRefPubMed
9.
go back to reference Alabi RO, Youssef O, Pirinen M, Elmusrati M, Makitie AA, Leivo I, et al. Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review. Artif Intell Med. 2021;115:102060.CrossRefPubMed Alabi RO, Youssef O, Pirinen M, Elmusrati M, Makitie AA, Leivo I, et al. Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review. Artif Intell Med. 2021;115:102060.CrossRefPubMed
10.
go back to reference Alkhadar H, Macluskey M, White S, Ellis I, Gardner A. Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma. J Oral Pathol Med. 2021;50(4):378–84.CrossRefPubMed Alkhadar H, Macluskey M, White S, Ellis I, Gardner A. Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma. J Oral Pathol Med. 2021;50(4):378–84.CrossRefPubMed
11.
go back to reference Alabi RO, Mäkitie AA, Pirinen M, Elmusrati M, Leivo I, Almangush A. Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer. Int J Med Inform. 2021;145:104313.CrossRefPubMed Alabi RO, Mäkitie AA, Pirinen M, Elmusrati M, Leivo I, Almangush A. Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer. Int J Med Inform. 2021;145:104313.CrossRefPubMed
12.
go back to reference Adeoye J, Hui L, Koohi-Moghadam M, Tan JY, Choi SW, Thomson P. Comparison of time-to-event machine learning models in predicting oral cavity cancer prognosis. Int J Med Inform. 2022;157:104635.CrossRefPubMed Adeoye J, Hui L, Koohi-Moghadam M, Tan JY, Choi SW, Thomson P. Comparison of time-to-event machine learning models in predicting oral cavity cancer prognosis. Int J Med Inform. 2022;157:104635.CrossRefPubMed
13.
go back to reference Sharma D, Deepali, Garg VK, Kashyap D, Goel N. A deep learning-based integrative model for survival time prediction of head and neck squamous cell carcinoma patients. Neural Comput Appl. 2022;34(23):21353-65. Sharma D, Deepali, Garg VK, Kashyap D, Goel N. A deep learning-based integrative model for survival time prediction of head and neck squamous cell carcinoma patients. Neural Comput Appl. 2022;34(23):21353-65.
15.
go back to reference Tseng YJ, Wang HY, Lin TW, Lu JJ, Hsieh CH, Liao CT. Development of a machine learning model for survival risk stratification of patients with advanced oral cancer. JAMA Netw Open. 2020;3(8):e2011768.CrossRefPubMedPubMedCentral Tseng YJ, Wang HY, Lin TW, Lu JJ, Hsieh CH, Liao CT. Development of a machine learning model for survival risk stratification of patients with advanced oral cancer. JAMA Netw Open. 2020;3(8):e2011768.CrossRefPubMedPubMedCentral
16.
go back to reference Adeoye J, Tan JY, Choi SW, Thomson P. Prediction models applying machine learning to oral cavity cancer outcomes: a systematic review. Int J Med Inform. 2021;154:104557.CrossRefPubMed Adeoye J, Tan JY, Choi SW, Thomson P. Prediction models applying machine learning to oral cavity cancer outcomes: a systematic review. Int J Med Inform. 2021;154:104557.CrossRefPubMed
18.
go back to reference Yang CH, Moi SH, Hou MF, Chuang LY, Lin YD. Applications of deep learning and fuzzy systems to detect cancer mortality in next-generation genomic data. IEEE Trans Fuzzy Syst. 2021;29(12):3833–44.CrossRef Yang CH, Moi SH, Hou MF, Chuang LY, Lin YD. Applications of deep learning and fuzzy systems to detect cancer mortality in next-generation genomic data. IEEE Trans Fuzzy Syst. 2021;29(12):3833–44.CrossRef
19.
go back to reference Banerjee S, Singh SK, Chakraborty A, Das A, Bag R. Melanoma diagnosis using deep learning and fuzzy logic. Diagnostics (Basel). 2020;10(8):577. Banerjee S, Singh SK, Chakraborty A, Das A, Bag R. Melanoma diagnosis using deep learning and fuzzy logic. Diagnostics (Basel). 2020;10(8):577.
20.
go back to reference Samanta S, Swaminathan M, Hu J, Lee KT, Sundaresan A, Goh CK, et al. Deep learning fuzzy inference: an interpretable model for detecting indirect immunofluorescence patterns associated with nasopharyngeal cancer. Am J Pathol. 2022;192(9):1295–304.CrossRefPubMed Samanta S, Swaminathan M, Hu J, Lee KT, Sundaresan A, Goh CK, et al. Deep learning fuzzy inference: an interpretable model for detecting indirect immunofluorescence patterns associated with nasopharyngeal cancer. Am J Pathol. 2022;192(9):1295–304.CrossRefPubMed
21.
go back to reference Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med. 2015;13:1.CrossRefPubMedPubMedCentral Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med. 2015;13:1.CrossRefPubMedPubMedCentral
22.
go back to reference Joseph VR. Optimal ratio for data splitting. Stat Analysis Data Mining. 2022;15(4):531–8.CrossRef Joseph VR. Optimal ratio for data splitting. Stat Analysis Data Mining. 2022;15(4):531–8.CrossRef
23.
go back to reference Guo C, Berkhahn F. Entity Embeddings of Categorical Variables. 2016. Guo C, Berkhahn F. Entity Embeddings of Categorical Variables. 2016.
24.
go back to reference Torres C, Gonzalez CI, Martinez GE. Fuzzy edge-detection as a preprocessing layer in deep neural networks for guitar classification. Sensors (Basel). 2022;22(15):5892. Torres C, Gonzalez CI, Martinez GE. Fuzzy edge-detection as a preprocessing layer in deep neural networks for guitar classification. Sensors (Basel). 2022;22(15):5892.
25.
go back to reference Zadeh LA. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 1997;90(2):111–27.CrossRef Zadeh LA. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 1997;90(2):111–27.CrossRef
26.
go back to reference Chen W, An J, Li R, Fu L, Xie G, Bhuiyan MZA, et al. A novel fuzzy deep-learning approach to traffic flow prediction with uncertain spatial–temporal data features. Future Generation Computer Syst. 2018;89:78–88.CrossRef Chen W, An J, Li R, Fu L, Xie G, Bhuiyan MZA, et al. A novel fuzzy deep-learning approach to traffic flow prediction with uncertain spatial–temporal data features. Future Generation Computer Syst. 2018;89:78–88.CrossRef
27.
go back to reference Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst Appl. 1998;13(4):18–28.CrossRef Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst Appl. 1998;13(4):18–28.CrossRef
28.
go back to reference Van Belle V, Pelckmans K, Van Huffel S, Suykens JAK. Support vector methods for survival analysis: a comparison between ranking and regression approaches. Artif Intell Med. 2011;53(2):107–18.CrossRefPubMed Van Belle V, Pelckmans K, Van Huffel S, Suykens JAK. Support vector methods for survival analysis: a comparison between ranking and regression approaches. Artif Intell Med. 2011;53(2):107–18.CrossRefPubMed
30.
go back to reference Janghorbani A, Moradi MH. Fuzzy evidential network and its application as medical prognosis and diagnosis models. J Biomed Inform. 2017;72:96–107.CrossRefPubMed Janghorbani A, Moradi MH. Fuzzy evidential network and its application as medical prognosis and diagnosis models. J Biomed Inform. 2017;72:96–107.CrossRefPubMed
31.
go back to reference Chandu A, Adams G, Smith AC. Factors affecting survival in patients with oral cancer: an Australian perspective. Int J Oral Maxillofac Surg. 2005;34(5):514–20.CrossRefPubMed Chandu A, Adams G, Smith AC. Factors affecting survival in patients with oral cancer: an Australian perspective. Int J Oral Maxillofac Surg. 2005;34(5):514–20.CrossRefPubMed
32.
go back to reference Sklenicka S, Gardiner S, Dierks EJ, Potter BE, Bell RB. Survival analysis and risk factors for recurrence in oral squamous cell carcinoma: does surgical salvage affect outcome? J Oral Maxillofac Surg. 2010;68(6):1270–5.CrossRefPubMed Sklenicka S, Gardiner S, Dierks EJ, Potter BE, Bell RB. Survival analysis and risk factors for recurrence in oral squamous cell carcinoma: does surgical salvage affect outcome? J Oral Maxillofac Surg. 2010;68(6):1270–5.CrossRefPubMed
33.
go back to reference Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.CrossRefPubMed Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.CrossRefPubMed
34.
go back to reference Matsuo K, Purushotham S, Jiang B, Mandelbaum RS, Takiuchi T, Liu Y, et al. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model. Am J Obstet Gynecol. 2019;220(4):381.e1-.e14.CrossRefPubMed Matsuo K, Purushotham S, Jiang B, Mandelbaum RS, Takiuchi T, Liu Y, et al. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model. Am J Obstet Gynecol. 2019;220(4):381.e1-.e14.CrossRefPubMed
35.
go back to reference Wiegrebe S, Kopper P, Sonabend R, Bischl B, Bender A. Deep learning for survival analysis: a review. Artif Intell Rev. 2024;57(3). Wiegrebe S, Kopper P, Sonabend R, Bischl B, Bender A. Deep learning for survival analysis: a review. Artif Intell Rev. 2024;57(3).
36.
go back to reference Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.CrossRefPubMed Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.CrossRefPubMed
37.
go back to reference Vaswani A, Shazeer NM, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al., editors. Attention is All you Need. Neural Information Processing Systems; 2017. Vaswani A, Shazeer NM, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al., editors. Attention is All you Need. Neural Information Processing Systems; 2017.
Metadata
Title
Survival estimation of oral cancer using fuzzy deep learning
Authors
Rachasak Somyanonthanakul
Kritsasith Warin
Sitthi Chaowchuen
Suthin Jinaporntham
Wararit Panichkitkosolkul
Siriwan Suebnukarn
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2024
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-024-04279-6

Other articles of this Issue 1/2024

BMC Oral Health 1/2024 Go to the issue