Skip to main content
Top
Published in: Medical Microbiology and Immunology 1/2018

01-02-2018 | Review

Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance

Authors: Dorji Dorji, Frits Mooi, Osvaldo Yantorno, Rajendar Deora, Ross M. Graham, Trilochan K. Mukkur

Published in: Medical Microbiology and Immunology | Issue 1/2018

Login to get access

Abstract

Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed.
Literature
1.
go back to reference Mattoo S, Cherry JD (2005) Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18(2):326–382PubMedPubMedCentralCrossRef Mattoo S, Cherry JD (2005) Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18(2):326–382PubMedPubMedCentralCrossRef
2.
go back to reference Gross R, Keidel K, Schmitt K (2010) Resemblance and divergence: the “new” members of the genus Bordetella. Med Microbiol Immunol 199(3):155–163PubMedCrossRef Gross R, Keidel K, Schmitt K (2010) Resemblance and divergence: the “new” members of the genus Bordetella. Med Microbiol Immunol 199(3):155–163PubMedCrossRef
3.
go back to reference Guiso N, Hegerle N (2014) Other Bordetellas, lessons for and from pertussis vaccines. Expert Rev Vaccines 13(9):1125–1133PubMedCrossRef Guiso N, Hegerle N (2014) Other Bordetellas, lessons for and from pertussis vaccines. Expert Rev Vaccines 13(9):1125–1133PubMedCrossRef
4.
go back to reference Brinig MM, Register KB, Ackermann MR et al (2006) Genomic features of Bordetella parapertussis clades with distinct host species specificity. Genome Biol 7(9):R81PubMedPubMedCentralCrossRef Brinig MM, Register KB, Ackermann MR et al (2006) Genomic features of Bordetella parapertussis clades with distinct host species specificity. Genome Biol 7(9):R81PubMedPubMedCentralCrossRef
5.
go back to reference Diavatopoulos DA, Cummings CA, Schouls LM et al (2005) Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog 1(4):e45PubMedPubMedCentralCrossRef Diavatopoulos DA, Cummings CA, Schouls LM et al (2005) Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog 1(4):e45PubMedPubMedCentralCrossRef
6.
go back to reference Parkhill J, Sebaihia M, Preston A et al (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35(1):32–40PubMedCrossRef Parkhill J, Sebaihia M, Preston A et al (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35(1):32–40PubMedCrossRef
8.
go back to reference van der Ark AA, Hozbor DF, Boog CJ et al (2012) Resurgence of pertussis calls for re-evaluation of pertussis animal models. Expert Rev Vaccines 11(9):1121–1137PubMedCrossRef van der Ark AA, Hozbor DF, Boog CJ et al (2012) Resurgence of pertussis calls for re-evaluation of pertussis animal models. Expert Rev Vaccines 11(9):1121–1137PubMedCrossRef
9.
go back to reference Gambhir M, Clark TA, Cauchemez S et al (2015) A change in vaccine efficacy and duration of protection explains recent rises in pertussis incidence in the United States. PLoS Comput Biol 11(4):e1004138PubMedPubMedCentralCrossRef Gambhir M, Clark TA, Cauchemez S et al (2015) A change in vaccine efficacy and duration of protection explains recent rises in pertussis incidence in the United States. PLoS Comput Biol 11(4):e1004138PubMedPubMedCentralCrossRef
10.
go back to reference Cornford-Nairns R, Daggard G, Mukkur T (2012) Construction and preliminary immunobiological characterization of a novel, non-reverting, intranasal live attenuated whooping cough vaccine candidate. J Microbiol Biotechnol 22(6):856–865PubMedCrossRef Cornford-Nairns R, Daggard G, Mukkur T (2012) Construction and preliminary immunobiological characterization of a novel, non-reverting, intranasal live attenuated whooping cough vaccine candidate. J Microbiol Biotechnol 22(6):856–865PubMedCrossRef
11.
go back to reference Bouchez V, Guiso N (2015) Bordetella pertussis, B. parapertussis, vaccines and cycles of whooping cough. Pathog Dis 73(7):ftv055PubMedCrossRef Bouchez V, Guiso N (2015) Bordetella pertussis, B. parapertussis, vaccines and cycles of whooping cough. Pathog Dis 73(7):ftv055PubMedCrossRef
12.
go back to reference Guiso N, Wirsing von Konig CH (2016) Surveillance of pertussis: methods and implementation. Expert Rev Anti Infect Ther 14(7):657–667PubMedCrossRef Guiso N, Wirsing von Konig CH (2016) Surveillance of pertussis: methods and implementation. Expert Rev Anti Infect Ther 14(7):657–667PubMedCrossRef
13.
go back to reference Fry SR, Chen AY, Daggard G et al (2008) Parenteral immunization of mice with a genetically inactivated pertussis toxin DNA vaccine induces cell-mediated immunity and protection. J Med Microbiol 57(Pt 1):28–35PubMedCrossRef Fry SR, Chen AY, Daggard G et al (2008) Parenteral immunization of mice with a genetically inactivated pertussis toxin DNA vaccine induces cell-mediated immunity and protection. J Med Microbiol 57(Pt 1):28–35PubMedCrossRef
15.
go back to reference Halperin BA, Halperin SA (2011) The reemergence of pertussis and infant deaths: is it time to immunize pregnant women? Future Microbiol 6(4):367–369PubMedCrossRef Halperin BA, Halperin SA (2011) The reemergence of pertussis and infant deaths: is it time to immunize pregnant women? Future Microbiol 6(4):367–369PubMedCrossRef
16.
go back to reference King AJ, van der Lee S, Mohangoo A et al (2013) Genome-wide gene expression analysis of Bordetella pertussis isolates associated with a resurgence in pertussis: elucidation of factors involved in the increased fitness of epidemic strains. PLoS One 8(6):e66150PubMedPubMedCentralCrossRef King AJ, van der Lee S, Mohangoo A et al (2013) Genome-wide gene expression analysis of Bordetella pertussis isolates associated with a resurgence in pertussis: elucidation of factors involved in the increased fitness of epidemic strains. PLoS One 8(6):e66150PubMedPubMedCentralCrossRef
17.
go back to reference Amirthalingam G, Gupta S, Campbell H (2013) Pertussis immunisation and control in England and Wales, 1957 to 2012: a historical review. Euro Surveill 18(38):20587PubMedCrossRef Amirthalingam G, Gupta S, Campbell H (2013) Pertussis immunisation and control in England and Wales, 1957 to 2012: a historical review. Euro Surveill 18(38):20587PubMedCrossRef
19.
go back to reference van Hoek AJ, Campbell H, Amirthalingam G et al (2013) The number of deaths among infants under one year of age in England with pertussis: results of a capture/recapture analysis for the period 2001 to 2011. Euro Surveill 18:9 van Hoek AJ, Campbell H, Amirthalingam G et al (2013) The number of deaths among infants under one year of age in England with pertussis: results of a capture/recapture analysis for the period 2001 to 2011. Euro Surveill 18:9
20.
go back to reference Ross PJ, Sutton CE, Higgins S et al (2013) Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog 9(4):e1003264PubMedPubMedCentralCrossRef Ross PJ, Sutton CE, Higgins S et al (2013) Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog 9(4):e1003264PubMedPubMedCentralCrossRef
21.
go back to reference Sheridan SL, McCall BJ, Davis CA et al (2014) Acellular pertussis vaccine effectiveness for children during the 2009–2010 pertussis epidemic in Queensland. Med J Aust 200(6):334–338PubMedCrossRef Sheridan SL, McCall BJ, Davis CA et al (2014) Acellular pertussis vaccine effectiveness for children during the 2009–2010 pertussis epidemic in Queensland. Med J Aust 200(6):334–338PubMedCrossRef
22.
go back to reference Tartof SY, Lewis M, Kenyon C et al (2013) Waning immunity to pertussis following 5 doses of DTaP. Pediatrics 131(4):e1047–e1052PubMedCrossRef Tartof SY, Lewis M, Kenyon C et al (2013) Waning immunity to pertussis following 5 doses of DTaP. Pediatrics 131(4):e1047–e1052PubMedCrossRef
24.
25.
go back to reference Mooi FR, van Loo IH, van Gent M et al (2009) Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerg Infect Dis 15(8):1206–1213PubMedPubMedCentralCrossRef Mooi FR, van Loo IH, van Gent M et al (2009) Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerg Infect Dis 15(8):1206–1213PubMedPubMedCentralCrossRef
26.
go back to reference Cattelan N, Dubey P, Arnal L et al (2016) Bordetella biofilms: a lifestyle leading to persistent infections. Pathog Dis 74(1):ftv108PubMedCrossRef Cattelan N, Dubey P, Arnal L et al (2016) Bordetella biofilms: a lifestyle leading to persistent infections. Pathog Dis 74(1):ftv108PubMedCrossRef
27.
go back to reference Conover MS, Sloan GP, Love CF et al (2010) The Bps polysaccharide of Bordetella pertussis promotes colonization and biofilm formation in the nose by functioning as an adhesin. Mol Microbiol 77(6):1439–1455PubMedPubMedCentralCrossRef Conover MS, Sloan GP, Love CF et al (2010) The Bps polysaccharide of Bordetella pertussis promotes colonization and biofilm formation in the nose by functioning as an adhesin. Mol Microbiol 77(6):1439–1455PubMedPubMedCentralCrossRef
28.
go back to reference Litt DJ, Neal SE, Fry NK (2009) Changes in genetic diversity of the Bordetella pertussis population in the United Kingdom between 1920 and 2006 reflect vaccination coverage and emergence of a single dominant clonal type. J Clin Microbiol 47(3):680–688PubMedPubMedCentralCrossRef Litt DJ, Neal SE, Fry NK (2009) Changes in genetic diversity of the Bordetella pertussis population in the United Kingdom between 1920 and 2006 reflect vaccination coverage and emergence of a single dominant clonal type. J Clin Microbiol 47(3):680–688PubMedPubMedCentralCrossRef
29.
go back to reference de Gouw D, Hermans PW, Bootsma HJ et al (2014) Differentially expressed genes in Bordetella pertussis strains belonging to a lineage which recently spread globally. PLoS One 9(1):e84523PubMedPubMedCentralCrossRef de Gouw D, Hermans PW, Bootsma HJ et al (2014) Differentially expressed genes in Bordetella pertussis strains belonging to a lineage which recently spread globally. PLoS One 9(1):e84523PubMedPubMedCentralCrossRef
30.
go back to reference Bart MJ, van der Heide HG, Zeddeman A et al (2015) Complete genome sequences of 11 Bordetella pertussis strains representing the pandemic ptxP3 lineage. Genome Announc 3(6):e1394–15CrossRef Bart MJ, van der Heide HG, Zeddeman A et al (2015) Complete genome sequences of 11 Bordetella pertussis strains representing the pandemic ptxP3 lineage. Genome Announc 3(6):e1394–15CrossRef
31.
go back to reference Safarchi A, Octavia S, Wu SZ et al (2016) Genomic dissection of Australian Bordetella pertussis isolates from the 2008–2012 epidemic. J Infect 72(4):468–477PubMedCrossRef Safarchi A, Octavia S, Wu SZ et al (2016) Genomic dissection of Australian Bordetella pertussis isolates from the 2008–2012 epidemic. J Infect 72(4):468–477PubMedCrossRef
32.
go back to reference Weigand MR, Peng Y, Loparev V et al (2017) The history of Bordetella pertussis genome evolution includes structural rearrangement. J Bacteriol 199:8CrossRef Weigand MR, Peng Y, Loparev V et al (2017) The history of Bordetella pertussis genome evolution includes structural rearrangement. J Bacteriol 199:8CrossRef
33.
go back to reference Zeddeman A, van Gent M, Heuvelman CJ et al (2014) Investigations into the emergence of pertactin-deficient Bordetella pertussis isolates in six European countries, 1996 to 2012. Euro Surveill 19:33CrossRef Zeddeman A, van Gent M, Heuvelman CJ et al (2014) Investigations into the emergence of pertactin-deficient Bordetella pertussis isolates in six European countries, 1996 to 2012. Euro Surveill 19:33CrossRef
34.
go back to reference Safarchi A, Octavia S, Luu LD et al (2016) Better colonisation of newly emerged Bordetella pertussis in the co-infection mouse model study. Vaccine 34(34):3967–3971PubMedCrossRef Safarchi A, Octavia S, Luu LD et al (2016) Better colonisation of newly emerged Bordetella pertussis in the co-infection mouse model study. Vaccine 34(34):3967–3971PubMedCrossRef
35.
go back to reference Hovingh ES, van Gent M, Hamstra HJ et al (2017) Emerging Bordetella pertussis strains induce enhanced signaling of human pattern recognition receptors TLR2, NOD2 and secretion of IL-10 by dendritic cells. PLoS One 12(1):e0170027PubMedPubMedCentralCrossRef Hovingh ES, van Gent M, Hamstra HJ et al (2017) Emerging Bordetella pertussis strains induce enhanced signaling of human pattern recognition receptors TLR2, NOD2 and secretion of IL-10 by dendritic cells. PLoS One 12(1):e0170027PubMedPubMedCentralCrossRef
36.
go back to reference Lam C, Octavia S, Ricafort L et al (2014) Rapid increase in pertactin-deficient Bordetella pertussis isolates, Australia. Emerg Infect Dis 20(4):626–633PubMedPubMedCentralCrossRef Lam C, Octavia S, Ricafort L et al (2014) Rapid increase in pertactin-deficient Bordetella pertussis isolates, Australia. Emerg Infect Dis 20(4):626–633PubMedPubMedCentralCrossRef
37.
go back to reference Otsuka N, Han HJ, Toyoizumi-Ajisaka H et al (2012) Prevalence and genetic characterization of pertactin-deficient Bordetella pertussis in Japan. PLoS One 7(2):e31985PubMedPubMedCentralCrossRef Otsuka N, Han HJ, Toyoizumi-Ajisaka H et al (2012) Prevalence and genetic characterization of pertactin-deficient Bordetella pertussis in Japan. PLoS One 7(2):e31985PubMedPubMedCentralCrossRef
38.
go back to reference Martin SW, Pawloski L, Williams M et al (2015) Pertactin-negative Bordetella pertussis strains: evidence for a possible selective advantage. Clin Infect Dis 60(2):223–227PubMedCrossRef Martin SW, Pawloski L, Williams M et al (2015) Pertactin-negative Bordetella pertussis strains: evidence for a possible selective advantage. Clin Infect Dis 60(2):223–227PubMedCrossRef
39.
go back to reference Safarchi A, Octavia S, Luu LD et al (2015) Pertactin negative Bordetella pertussis demonstrates higher fitness under vaccine selection pressure in a mixed infection model. Vaccine 33(46):6277–6281PubMedCrossRef Safarchi A, Octavia S, Luu LD et al (2015) Pertactin negative Bordetella pertussis demonstrates higher fitness under vaccine selection pressure in a mixed infection model. Vaccine 33(46):6277–6281PubMedCrossRef
40.
go back to reference Irie Y, Preston A, Yuk MH (2006) Expression of the primary carbohydrate component of the Bordetella bronchiseptica biofilm matrix is dependent on growth phase but independent of Bvg regulation. J Bacteriol 188(18):6680–6687PubMedPubMedCentralCrossRef Irie Y, Preston A, Yuk MH (2006) Expression of the primary carbohydrate component of the Bordetella bronchiseptica biofilm matrix is dependent on growth phase but independent of Bvg regulation. J Bacteriol 188(18):6680–6687PubMedPubMedCentralCrossRef
41.
go back to reference Decker KB, James TD, Stibitz S et al (2012) The Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA. Microbiology 158(Pt 7):1665–1676PubMedPubMedCentralCrossRef Decker KB, James TD, Stibitz S et al (2012) The Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA. Microbiology 158(Pt 7):1665–1676PubMedPubMedCentralCrossRef
43.
go back to reference Beier D, Gross R (2008) The BvgS/BvgA phosphorelay system of pathogenic Bordetellae: structure, function and evolution. Adv Exp Med Biol 631:149–160PubMedCrossRef Beier D, Gross R (2008) The BvgS/BvgA phosphorelay system of pathogenic Bordetellae: structure, function and evolution. Adv Exp Med Biol 631:149–160PubMedCrossRef
45.
go back to reference Kinnear SM, Marques RR, Carbonetti NH (2001) Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity. Infect Immun 69(4):1983–1993PubMedPubMedCentralCrossRef Kinnear SM, Marques RR, Carbonetti NH (2001) Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity. Infect Immun 69(4):1983–1993PubMedPubMedCentralCrossRef
46.
go back to reference Deora R, Bootsma HJ, Miller JF et al (2001) Diversity in the Bordetella virulence regulon: transcriptional control of a Bvg-intermediate phase gene. Mol Microbiol 40(3):669–683PubMedCrossRef Deora R, Bootsma HJ, Miller JF et al (2001) Diversity in the Bordetella virulence regulon: transcriptional control of a Bvg-intermediate phase gene. Mol Microbiol 40(3):669–683PubMedCrossRef
47.
go back to reference Cotter PA, Miller JF (1997) A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg-regulated antigens. Mol Microbiol 24(4):671–685PubMedCrossRef Cotter PA, Miller JF (1997) A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg-regulated antigens. Mol Microbiol 24(4):671–685PubMedCrossRef
48.
go back to reference Stockbauer KE, Fuchslocher B, Miller JF et al (2001) Identification and characterization of BipA, a Bordetella Bvg-intermediate phase protein. Mol Microbiol 39(1):65–78PubMedCrossRef Stockbauer KE, Fuchslocher B, Miller JF et al (2001) Identification and characterization of BipA, a Bordetella Bvg-intermediate phase protein. Mol Microbiol 39(1):65–78PubMedCrossRef
49.
go back to reference Cummings CA, Bootsma HJ, Relman DA et al (2006) Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS. J Bacteriol 188(5):1775–1785PubMedPubMedCentralCrossRef Cummings CA, Bootsma HJ, Relman DA et al (2006) Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS. J Bacteriol 188(5):1775–1785PubMedPubMedCentralCrossRef
50.
go back to reference Scarlato V, Arico B, Prugnola A et al (1991) Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO J 10(12):3971–3975PubMedPubMedCentral Scarlato V, Arico B, Prugnola A et al (1991) Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO J 10(12):3971–3975PubMedPubMedCentral
51.
go back to reference Jones AM, Boucher PE, Williams CL et al (2005) Role of BvgA phosphorylation and DNA binding affinity in control of Bvg-mediated phenotypic phase transition in Bordetella pertussis. Mol Microbiol 58(3):700–713PubMedCrossRef Jones AM, Boucher PE, Williams CL et al (2005) Role of BvgA phosphorylation and DNA binding affinity in control of Bvg-mediated phenotypic phase transition in Bordetella pertussis. Mol Microbiol 58(3):700–713PubMedCrossRef
52.
go back to reference Stenson TH, Allen AG, Al-Meer JA et al (2005) Bordetella pertussis risA, but not risS, is required for maximal expression of Bvg-repressed genes. Infect Immun 73(9):5995–6004PubMedPubMedCentralCrossRef Stenson TH, Allen AG, Al-Meer JA et al (2005) Bordetella pertussis risA, but not risS, is required for maximal expression of Bvg-repressed genes. Infect Immun 73(9):5995–6004PubMedPubMedCentralCrossRef
53.
go back to reference Jungnitz H, West NP, Walker MJ et al (1998) A second two-component regulatory system of Bordetella bronchiseptica required for bacterial resistance to oxidative stress, production of acid phosphatase, and in vivo persistence. Infect Immun 66(10):4640–4650PubMedPubMedCentral Jungnitz H, West NP, Walker MJ et al (1998) A second two-component regulatory system of Bordetella bronchiseptica required for bacterial resistance to oxidative stress, production of acid phosphatase, and in vivo persistence. Infect Immun 66(10):4640–4650PubMedPubMedCentral
54.
go back to reference Medhekar B, Shrivastava R, Mattoo S et al (2009) Bordetella Bsp22 forms a filamentous type III secretion system tip complex and is immunoprotective in vitro and in vivo. Mol Microbiol 71(2):492–504PubMedCrossRef Medhekar B, Shrivastava R, Mattoo S et al (2009) Bordetella Bsp22 forms a filamentous type III secretion system tip complex and is immunoprotective in vitro and in vivo. Mol Microbiol 71(2):492–504PubMedCrossRef
55.
go back to reference Villarino Romero R, Bibova I, Cerny O et al (2013) The Bordetella pertussis type III secretion system tip complex protein Bsp22 is not a protective antigen and fails to elicit serum antibody responses during infection of humans and mice. Infect Immun 81(8):2761–2767PubMedPubMedCentralCrossRef Villarino Romero R, Bibova I, Cerny O et al (2013) The Bordetella pertussis type III secretion system tip complex protein Bsp22 is not a protective antigen and fails to elicit serum antibody responses during infection of humans and mice. Infect Immun 81(8):2761–2767PubMedPubMedCentralCrossRef
56.
go back to reference Fernandez S, Fajardo EM, Mandiarote A et al (2013) A proteoliposome formulation derived from Bordetella pertussis induces protection in two murine challenge models. BMC Immunol 14(Suppl 1):S8PubMedPubMedCentral Fernandez S, Fajardo EM, Mandiarote A et al (2013) A proteoliposome formulation derived from Bordetella pertussis induces protection in two murine challenge models. BMC Immunol 14(Suppl 1):S8PubMedPubMedCentral
57.
go back to reference de Gouw D, Serra O, de Jonge D MI et al (2014) The vaccine potential of Bordetella pertussis biofilm-derived membrane proteins. Emerg Microb Infect 3:e58CrossRef de Gouw D, Serra O, de Jonge D MI et al (2014) The vaccine potential of Bordetella pertussis biofilm-derived membrane proteins. Emerg Microb Infect 3:e58CrossRef
58.
go back to reference Cainelli Gebara VC, Risoleo L, Lopes AP et al (2007) Adjuvant and immunogenic activities of the 73 kDa N-terminal alpha-domain of BrkA autotransporter and Cpn60/60 kDa chaperonin of Bordetella pertussis. Vaccine 25(4):621–629PubMedCrossRef Cainelli Gebara VC, Risoleo L, Lopes AP et al (2007) Adjuvant and immunogenic activities of the 73 kDa N-terminal alpha-domain of BrkA autotransporter and Cpn60/60 kDa chaperonin of Bordetella pertussis. Vaccine 25(4):621–629PubMedCrossRef
59.
go back to reference Marr N, Oliver DC, Laurent V et al (2008) Protective activity of the Bordetella pertussis BrkA autotransporter in the murine lung colonization model. Vaccine 26(34):4306–4311PubMedCrossRef Marr N, Oliver DC, Laurent V et al (2008) Protective activity of the Bordetella pertussis BrkA autotransporter in the murine lung colonization model. Vaccine 26(34):4306–4311PubMedCrossRef
60.
go back to reference Alvarez Hayes J, Erben E, Lamberti Y et al (2013) Bordetella pertussis iron regulated proteins as potential vaccine components. Vaccine 31(35):3543–3548PubMedCrossRef Alvarez Hayes J, Erben E, Lamberti Y et al (2013) Bordetella pertussis iron regulated proteins as potential vaccine components. Vaccine 31(35):3543–3548PubMedCrossRef
61.
go back to reference Yilmaz C, Apak A, Ozcengiz E et al (2016) Immunogenicity and protective efficacy of recombinant Iron Superoxide Dismutase protein from Bordetella pertussis in mice models. Microbiol Immunol 60:717–721PubMedCrossRef Yilmaz C, Apak A, Ozcengiz E et al (2016) Immunogenicity and protective efficacy of recombinant Iron Superoxide Dismutase protein from Bordetella pertussis in mice models. Microbiol Immunol 60:717–721PubMedCrossRef
62.
go back to reference Hendrikx LH, Berbers GA, Veenhoven RH et al (2009) IgG responses after booster vaccination with different pertussis vaccines in Dutch children 4 years of age: effect of vaccine antigen content. Vaccine 27(47):6530–6536PubMedCrossRef Hendrikx LH, Berbers GA, Veenhoven RH et al (2009) IgG responses after booster vaccination with different pertussis vaccines in Dutch children 4 years of age: effect of vaccine antigen content. Vaccine 27(47):6530–6536PubMedCrossRef
63.
go back to reference Marzouqi I, Richmond P, Fry S et al (2010) Development of improved vaccines against whooping cough: current status. Hum Vaccin 6(7):543–553PubMedCrossRef Marzouqi I, Richmond P, Fry S et al (2010) Development of improved vaccines against whooping cough: current status. Hum Vaccin 6(7):543–553PubMedCrossRef
64.
go back to reference Linz B, Ivanov YV, Preston A et al (2016) Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genom 17(1):767CrossRef Linz B, Ivanov YV, Preston A et al (2016) Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genom 17(1):767CrossRef
65.
go back to reference Mangmool S, Kurose H (2011) G(i/o) protein-dependent and -independent actions of pertussis toxin (PTX). Toxins (Basel) 3(7):884–899CrossRef Mangmool S, Kurose H (2011) G(i/o) protein-dependent and -independent actions of pertussis toxin (PTX). Toxins (Basel) 3(7):884–899CrossRef
66.
go back to reference Carbonetti NH (2010) Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol 5(3):455–469PubMedPubMedCentralCrossRef Carbonetti NH (2010) Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol 5(3):455–469PubMedPubMedCentralCrossRef
67.
go back to reference Bouchez V, Brun D, Cantinelli T et al (2009) First report and detailed characterization of B. pertussis isolates not expressing Pertussis Toxin or Pertactin. Vaccine 27(43):6034–6041PubMedCrossRef Bouchez V, Brun D, Cantinelli T et al (2009) First report and detailed characterization of B. pertussis isolates not expressing Pertussis Toxin or Pertactin. Vaccine 27(43):6034–6041PubMedCrossRef
68.
go back to reference Dalby T, Andersen PH, Hoffmann S (2016) Epidemiology of pertussis in Denmark, 1995 to 2013. Euro Surveill 21:36CrossRef Dalby T, Andersen PH, Hoffmann S (2016) Epidemiology of pertussis in Denmark, 1995 to 2013. Euro Surveill 21:36CrossRef
70.
go back to reference Taranger J, Trollfors B, Bergfors E et al (2001) Immunologic and epidemiologic experience of vaccination with a monocomponent pertussis toxoid vaccine. Pediatrics 108(6):E115PubMedCrossRef Taranger J, Trollfors B, Bergfors E et al (2001) Immunologic and epidemiologic experience of vaccination with a monocomponent pertussis toxoid vaccine. Pediatrics 108(6):E115PubMedCrossRef
71.
go back to reference Sutherland JN, Chang C, Yoder SM et al (2011) Antibodies recognizing protective pertussis toxin epitopes are preferentially elicited by natural infection versus acellular immunization. Clin Vaccine Immunol 18(6):954–962PubMedPubMedCentralCrossRef Sutherland JN, Chang C, Yoder SM et al (2011) Antibodies recognizing protective pertussis toxin epitopes are preferentially elicited by natural infection versus acellular immunization. Clin Vaccine Immunol 18(6):954–962PubMedPubMedCentralCrossRef
72.
go back to reference Eby JC, Gray MC, Warfel JM et al (2013) Quantification of the adenylate cyclase toxin of Bordetella pertussis in vitro and during respiratory infection. Infect Immun 81(5):1390–1398PubMedPubMedCentralCrossRef Eby JC, Gray MC, Warfel JM et al (2013) Quantification of the adenylate cyclase toxin of Bordetella pertussis in vitro and during respiratory infection. Infect Immun 81(5):1390–1398PubMedPubMedCentralCrossRef
73.
go back to reference Vojtova J, Kamanova J, Sebo P (2006) Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr Opin Microbiol 9(1):69–75PubMedCrossRef Vojtova J, Kamanova J, Sebo P (2006) Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr Opin Microbiol 9(1):69–75PubMedCrossRef
74.
go back to reference Bumba L, Masin J, Fiser R et al (2010) Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog 6(5):e1000901PubMedPubMedCentralCrossRef Bumba L, Masin J, Fiser R et al (2010) Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog 6(5):e1000901PubMedPubMedCentralCrossRef
75.
go back to reference Fiser R, Masin J, Bumba L et al (2012) Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores. PLoS Pathog 8(4):e1002580PubMedPubMedCentralCrossRef Fiser R, Masin J, Bumba L et al (2012) Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores. PLoS Pathog 8(4):e1002580PubMedPubMedCentralCrossRef
76.
go back to reference Guiso N, Grimprel E, Anjak I et al (1993) Western blot analysis of antibody responses of young infants to pertussis infection. Eur J Clin Microbiol Infect Dis 12(8):596–600PubMedCrossRef Guiso N, Grimprel E, Anjak I et al (1993) Western blot analysis of antibody responses of young infants to pertussis infection. Eur J Clin Microbiol Infect Dis 12(8):596–600PubMedCrossRef
77.
go back to reference Grimprel E, Begue P, Anjak I et al (1996) Long-term human serum antibody responses after immunization with whole-cell pertussis vaccine in France. Clin Diagn Lab Immunol 3(1):93–97PubMedPubMedCentral Grimprel E, Begue P, Anjak I et al (1996) Long-term human serum antibody responses after immunization with whole-cell pertussis vaccine in France. Clin Diagn Lab Immunol 3(1):93–97PubMedPubMedCentral
78.
go back to reference Guiso N, Szatanik M, Rocancourt M (1991) Protective activity of Bordetella adenylate cyclase-hemolysin against bacterial colonization. Microb Pathog 11(6):423–431PubMedCrossRef Guiso N, Szatanik M, Rocancourt M (1991) Protective activity of Bordetella adenylate cyclase-hemolysin against bacterial colonization. Microb Pathog 11(6):423–431PubMedCrossRef
79.
go back to reference Betsou F, Sebo P, Guiso N (1995) The C-terminal domain is essential for protective activity of the Bordetella pertussis adenylate cyclase-hemolysin. Infect Immun 63(9):3309–3315PubMedPubMedCentral Betsou F, Sebo P, Guiso N (1995) The C-terminal domain is essential for protective activity of the Bordetella pertussis adenylate cyclase-hemolysin. Infect Immun 63(9):3309–3315PubMedPubMedCentral
81.
go back to reference Dautin N, Karimova G, Ladant D (2002) Bordetella pertussis adenylate cyclase toxin: a versatile screening tool. Toxicon 40(10):1383–1387PubMedCrossRef Dautin N, Karimova G, Ladant D (2002) Bordetella pertussis adenylate cyclase toxin: a versatile screening tool. Toxicon 40(10):1383–1387PubMedCrossRef
82.
go back to reference Fayolle C, Bauche C, Ladant D et al (2004) Bordetella pertussis adenylate cyclase delivers chemically coupled CD8+ T-cell epitopes to dendritic cells and elicits CTL in vivo. Vaccine 23(5):604–614PubMedCrossRef Fayolle C, Bauche C, Ladant D et al (2004) Bordetella pertussis adenylate cyclase delivers chemically coupled CD8+ T-cell epitopes to dendritic cells and elicits CTL in vivo. Vaccine 23(5):604–614PubMedCrossRef
83.
go back to reference Schlecht G, Loucka J, Najar H et al (2004) Antigen targeting to CD11b allows efficient presentation of CD4+ and CD8+ T cell epitopes and in vivo Th1-polarized T cell priming. J Immunol 173(10):6089–6097PubMedCrossRef Schlecht G, Loucka J, Najar H et al (2004) Antigen targeting to CD11b allows efficient presentation of CD4+ and CD8+ T cell epitopes and in vivo Th1-polarized T cell priming. J Immunol 173(10):6089–6097PubMedCrossRef
84.
go back to reference Mascarell L, Bauche C, Fayolle C et al (2006) Delivery of the HIV-1 Tat protein to dendritic cells by the CyaA vector induces specific Th1 responses and high affinity neutralizing antibodies in non human primates. Vaccine 24(17):3490–3499PubMedCrossRef Mascarell L, Bauche C, Fayolle C et al (2006) Delivery of the HIV-1 Tat protein to dendritic cells by the CyaA vector induces specific Th1 responses and high affinity neutralizing antibodies in non human primates. Vaccine 24(17):3490–3499PubMedCrossRef
85.
go back to reference Luker KE, Collier JL, Kolodziej EW et al (1993) Bordetella pertussis tracheal cytotoxin and other muramyl peptides: distinct structure-activity relationships for respiratory epithelial cytopathology. Proc Natl Acad Sci USA 90(6):2365–2369PubMedPubMedCentralCrossRef Luker KE, Collier JL, Kolodziej EW et al (1993) Bordetella pertussis tracheal cytotoxin and other muramyl peptides: distinct structure-activity relationships for respiratory epithelial cytopathology. Proc Natl Acad Sci USA 90(6):2365–2369PubMedPubMedCentralCrossRef
86.
go back to reference Goldman WE, Cookson BT (1988) Structure and functions of the Bordetella tracheal cytotoxin. Tokai J Exp Clin Med 13(suppl):187–191PubMed Goldman WE, Cookson BT (1988) Structure and functions of the Bordetella tracheal cytotoxin. Tokai J Exp Clin Med 13(suppl):187–191PubMed
88.
go back to reference Flak TA, Heiss LN, Engle JT et al (2000) Synergistic epithelial responses to endotoxin and a naturally occurring muramyl peptide. Infect Immun 68(3):1235–1242PubMedPubMedCentralCrossRef Flak TA, Heiss LN, Engle JT et al (2000) Synergistic epithelial responses to endotoxin and a naturally occurring muramyl peptide. Infect Immun 68(3):1235–1242PubMedPubMedCentralCrossRef
89.
go back to reference Cundell DR, Kanthakumar K, Taylor GW et al (1994) Effect of tracheal cytotoxin from Bordetella pertussis on human neutrophil function in vitro. Infect Immun 62(2):639–643PubMedPubMedCentral Cundell DR, Kanthakumar K, Taylor GW et al (1994) Effect of tracheal cytotoxin from Bordetella pertussis on human neutrophil function in vitro. Infect Immun 62(2):639–643PubMedPubMedCentral
90.
go back to reference Matsuzawa T, Fukui A, Kashimoto T et al (2004) Bordetella dermonecrotic toxin undergoes proteolytic processing to be translocated from a dynamin-related endosome into the cytoplasm in an acidification-independent manner. J Biol Chem 279(4):2866–2872PubMedCrossRef Matsuzawa T, Fukui A, Kashimoto T et al (2004) Bordetella dermonecrotic toxin undergoes proteolytic processing to be translocated from a dynamin-related endosome into the cytoplasm in an acidification-independent manner. J Biol Chem 279(4):2866–2872PubMedCrossRef
91.
go back to reference Boureux A, Vignal E, Faure S et al (2007) Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 24(1):203–216PubMedCrossRef Boureux A, Vignal E, Faure S et al (2007) Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 24(1):203–216PubMedCrossRef
92.
go back to reference Masuda M, Betancourt L, Matsuzawa T et al (2000) Activation of rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin. EMBO J 19(4):521–530PubMedPubMedCentralCrossRef Masuda M, Betancourt L, Matsuzawa T et al (2000) Activation of rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin. EMBO J 19(4):521–530PubMedPubMedCentralCrossRef
93.
go back to reference Horiguchi Y (2001) Escherichia coli cytotoxic necrotizing factors and Bordetella dermonecrotic toxin: the dermonecrosis-inducing toxins activating Rho small GTPases. Toxicon 39(11):1619–1627PubMedCrossRef Horiguchi Y (2001) Escherichia coli cytotoxic necrotizing factors and Bordetella dermonecrotic toxin: the dermonecrosis-inducing toxins activating Rho small GTPases. Toxicon 39(11):1619–1627PubMedCrossRef
94.
go back to reference Matsuzawa T, Kashimoto T, Katahira J et al (2002) Identification of a receptor-binding domain of Bordetella dermonecrotic toxin. Infect Immun 70(7):3427–3432PubMedPubMedCentralCrossRef Matsuzawa T, Kashimoto T, Katahira J et al (2002) Identification of a receptor-binding domain of Bordetella dermonecrotic toxin. Infect Immun 70(7):3427–3432PubMedPubMedCentralCrossRef
95.
go back to reference Weiss AA, Goodwin MS (1989) Lethal infection by Bordetella pertussis mutants in the infant mouse model. Infect Immun 57(12):3757–3764PubMedPubMedCentral Weiss AA, Goodwin MS (1989) Lethal infection by Bordetella pertussis mutants in the infant mouse model. Infect Immun 57(12):3757–3764PubMedPubMedCentral
96.
go back to reference Inatsuka CS, Xu Q, Vujkovic-Cvijin I et al (2010) Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infect Immun 78(7):2901–2909PubMedPubMedCentralCrossRef Inatsuka CS, Xu Q, Vujkovic-Cvijin I et al (2010) Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infect Immun 78(7):2901–2909PubMedPubMedCentralCrossRef
97.
go back to reference Hijnen M, He Q, Schepp R et al (2008) Antibody responses to defined regions of the Bordetella pertussis virulence factor pertactin. Scand J Infect Dis 40(2):94–104PubMedCrossRef Hijnen M, He Q, Schepp R et al (2008) Antibody responses to defined regions of the Bordetella pertussis virulence factor pertactin. Scand J Infect Dis 40(2):94–104PubMedCrossRef
98.
go back to reference Leininger E, Ewanowich CA, Bhargava A et al (1992) Comparative roles of the Arg-Gly-Asp sequence present in the Bordetella pertussis adhesins pertactin and filamentous hemagglutinin. Infect Immun 60(6):2380–2385PubMedPubMedCentral Leininger E, Ewanowich CA, Bhargava A et al (1992) Comparative roles of the Arg-Gly-Asp sequence present in the Bordetella pertussis adhesins pertactin and filamentous hemagglutinin. Infect Immun 60(6):2380–2385PubMedPubMedCentral
99.
go back to reference Leininger E, Roberts M, Kenimer JG et al (1991) Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci USA 88(2):345–349PubMedPubMedCentralCrossRef Leininger E, Roberts M, Kenimer JG et al (1991) Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci USA 88(2):345–349PubMedPubMedCentralCrossRef
100.
go back to reference Everest P, Li J, Douce G et al (1996) Role of the Bordetella pertussis P.69/pertactin protein and the P.69/pertactin RGD motif in the adherence to and invasion of mammalian cells. Microbiology 142(Pt 11):3261–3268PubMedCrossRef Everest P, Li J, Douce G et al (1996) Role of the Bordetella pertussis P.69/pertactin protein and the P.69/pertactin RGD motif in the adherence to and invasion of mammalian cells. Microbiology 142(Pt 11):3261–3268PubMedCrossRef
101.
go back to reference van den Berg BM, Beekhuizen H, Willems RJ et al (1999) Role of Bordetella pertussis virulence factors in adherence to epithelial cell lines derived from the human respiratory tract. Infect Immun 67(3):1056–1062PubMedPubMedCentral van den Berg BM, Beekhuizen H, Willems RJ et al (1999) Role of Bordetella pertussis virulence factors in adherence to epithelial cell lines derived from the human respiratory tract. Infect Immun 67(3):1056–1062PubMedPubMedCentral
102.
go back to reference Mooi FR, van Oirschot H, Heuvelman K et al (1998) Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect Immun 66(2):670–675PubMedPubMedCentral Mooi FR, van Oirschot H, Heuvelman K et al (1998) Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect Immun 66(2):670–675PubMedPubMedCentral
103.
go back to reference Barkoff AM, Mertsola J, Guillot S et al (2012) Appearance of Bordetella pertussis strains not expressing the vaccine antigen pertactin in Finland. Clin Vaccine Immunol 19(10):1703–1704PubMedPubMedCentralCrossRef Barkoff AM, Mertsola J, Guillot S et al (2012) Appearance of Bordetella pertussis strains not expressing the vaccine antigen pertactin in Finland. Clin Vaccine Immunol 19(10):1703–1704PubMedPubMedCentralCrossRef
104.
go back to reference Hallander HO, Advani A, Donnelly D et al (2005) Shifts of Bordetella pertussis variants in Sweden from 1970 to 2003, during three periods marked by different vaccination programs. J Clin Microbiol 43(6):2856–2865PubMedPubMedCentralCrossRef Hallander HO, Advani A, Donnelly D et al (2005) Shifts of Bordetella pertussis variants in Sweden from 1970 to 2003, during three periods marked by different vaccination programs. J Clin Microbiol 43(6):2856–2865PubMedPubMedCentralCrossRef
105.
go back to reference Breakwell L, Kelso P, Finley C et al (2016) Pertussis vaccine effectiveness in the setting of Pertactin-deficient pertussis. Pediatrics 137(5):e20153973PubMedCrossRef Breakwell L, Kelso P, Finley C et al (2016) Pertussis vaccine effectiveness in the setting of Pertactin-deficient pertussis. Pediatrics 137(5):e20153973PubMedCrossRef
106.
go back to reference Komatsu E, Yamaguchi F, Abe A et al (2010) Synergic effect of genotype changes in pertussis toxin and pertactin on adaptation to an acellular pertussis vaccine in the murine intranasal challenge model. Clin Vaccine Immunol 17(5):807–812PubMedPubMedCentralCrossRef Komatsu E, Yamaguchi F, Abe A et al (2010) Synergic effect of genotype changes in pertussis toxin and pertactin on adaptation to an acellular pertussis vaccine in the murine intranasal challenge model. Clin Vaccine Immunol 17(5):807–812PubMedPubMedCentralCrossRef
107.
go back to reference Bottero D, Gaillard ME, Fingermann M et al (2007) Pulsed-field gel electrophoresis, pertactin, pertussis toxin S1 subunit polymorphisms, and surfaceome analysis of vaccine and clinical Bordetella pertussis strains. Clin Vaccine Immunol 14(11):1490–1498PubMedPubMedCentralCrossRef Bottero D, Gaillard ME, Fingermann M et al (2007) Pulsed-field gel electrophoresis, pertactin, pertussis toxin S1 subunit polymorphisms, and surfaceome analysis of vaccine and clinical Bordetella pertussis strains. Clin Vaccine Immunol 14(11):1490–1498PubMedPubMedCentralCrossRef
108.
go back to reference Finn TM, Stevens LA (1995) Tracheal colonization factor: a Bordetella pertussis secreted virulence determinant. Mol Microbiol 16(4):625–634PubMedCrossRef Finn TM, Stevens LA (1995) Tracheal colonization factor: a Bordetella pertussis secreted virulence determinant. Mol Microbiol 16(4):625–634PubMedCrossRef
109.
go back to reference Chen I, Finn TM, Yanqing L et al (1998) A recombinant live attenuated strain of Vibrio cholerae induces immunity against tetanus toxin and Bordetella pertussis tracheal colonization factor. Infect Immun 66(4):1648–1653PubMedPubMedCentral Chen I, Finn TM, Yanqing L et al (1998) A recombinant live attenuated strain of Vibrio cholerae induces immunity against tetanus toxin and Bordetella pertussis tracheal colonization factor. Infect Immun 66(4):1648–1653PubMedPubMedCentral
110.
go back to reference Fernandez RC, Weiss AA (1994) Cloning and sequencing of a Bordetella pertussis serum resistance locus. Infect Immun 62(11):4727–4738PubMedPubMedCentral Fernandez RC, Weiss AA (1994) Cloning and sequencing of a Bordetella pertussis serum resistance locus. Infect Immun 62(11):4727–4738PubMedPubMedCentral
111.
go back to reference Zhai Y, Zhang K, Huo Y et al (2011) Autotransporter passenger domain secretion requires a hydrophobic cavity at the extracellular entrance of the beta-domain pore. Biochem J 435(3):577–587PubMedCrossRef Zhai Y, Zhang K, Huo Y et al (2011) Autotransporter passenger domain secretion requires a hydrophobic cavity at the extracellular entrance of the beta-domain pore. Biochem J 435(3):577–587PubMedCrossRef
112.
go back to reference Oliver DC, Fernandez RC (2001) Antibodies to BrkA augment killing of Bordetella pertussis. Vaccine 20(1–2):235–241PubMedCrossRef Oliver DC, Fernandez RC (2001) Antibodies to BrkA augment killing of Bordetella pertussis. Vaccine 20(1–2):235–241PubMedCrossRef
113.
114.
go back to reference Marr N, Shah NR, Lee R et al (2011) Bordetella pertussis autotransporter Vag8 binds human C1 esterase inhibitor and confers serum resistance. PLoS One 6(6):e20585PubMedPubMedCentralCrossRef Marr N, Shah NR, Lee R et al (2011) Bordetella pertussis autotransporter Vag8 binds human C1 esterase inhibitor and confers serum resistance. PLoS One 6(6):e20585PubMedPubMedCentralCrossRef
115.
go back to reference de Gouw D, de Jonge MI, Hermans PW et al (2014) Proteomics-identified Bvg-activated autotransporters protect against Bordetella pertussis in a mouse model. PLoS One 9(8):e105011PubMedPubMedCentralCrossRef de Gouw D, de Jonge MI, Hermans PW et al (2014) Proteomics-identified Bvg-activated autotransporters protect against Bordetella pertussis in a mouse model. PLoS One 9(8):e105011PubMedPubMedCentralCrossRef
116.
go back to reference Noofeli M, Bokhari H, Blackburn P et al (2011) BapC autotransporter protein is a virulence determinant of Bordetella pertussis. Microb Pathog 51(3):169–177PubMedCrossRef Noofeli M, Bokhari H, Blackburn P et al (2011) BapC autotransporter protein is a virulence determinant of Bordetella pertussis. Microb Pathog 51(3):169–177PubMedCrossRef
117.
go back to reference de Gouw D, Diavatopoulos DA, Bootsma HJ et al (2011) Pertussis: a matter of immune modulation. FEMS Microbiol Rev 35(3):441–474PubMedCrossRef de Gouw D, Diavatopoulos DA, Bootsma HJ et al (2011) Pertussis: a matter of immune modulation. FEMS Microbiol Rev 35(3):441–474PubMedCrossRef
118.
go back to reference Asgarian-Omran H, Amirzargar AA, Arjmand M et al (2013) Expression, purification and characterization of three overlapping immunodominant recombinant fragments from Bordetella pertussis filamentous hemagglutinin. Avicenna J Med Biotechnol 5(1):20–28PubMedPubMedCentral Asgarian-Omran H, Amirzargar AA, Arjmand M et al (2013) Expression, purification and characterization of three overlapping immunodominant recombinant fragments from Bordetella pertussis filamentous hemagglutinin. Avicenna J Med Biotechnol 5(1):20–28PubMedPubMedCentral
119.
go back to reference Scheller EV, Melvin JA, Sheets AJ et al (2015) Cooperative roles for fimbria and filamentous hemagglutinin in Bordetella adherence and immune modulation. MBio 6(3):e00500–e00515PubMedPubMedCentralCrossRef Scheller EV, Melvin JA, Sheets AJ et al (2015) Cooperative roles for fimbria and filamentous hemagglutinin in Bordetella adherence and immune modulation. MBio 6(3):e00500–e00515PubMedPubMedCentralCrossRef
120.
go back to reference Coutte L, Willery E, Antoine R et al (2003) Surface anchoring of bacterial subtilisin important for maturation function. Mol Microbiol 49(2):529–539PubMedCrossRef Coutte L, Willery E, Antoine R et al (2003) Surface anchoring of bacterial subtilisin important for maturation function. Mol Microbiol 49(2):529–539PubMedCrossRef
121.
122.
go back to reference Knight JB, Huang YY, Halperin SA et al (2006) Immunogenicity and protective efficacy of a recombinant filamentous haemagglutinin from Bordetella pertussis. Clin Exp Immunol 144(3):543–551PubMedPubMedCentralCrossRef Knight JB, Huang YY, Halperin SA et al (2006) Immunogenicity and protective efficacy of a recombinant filamentous haemagglutinin from Bordetella pertussis. Clin Exp Immunol 144(3):543–551PubMedPubMedCentralCrossRef
123.
go back to reference Alonso S, Reveneau N, Pethe K et al (2002) Eighty-kilodalton N-terminal moiety of Bordetella pertussis filamentous hemagglutinin: adherence, immunogenicity, and protective role. Infect Immun 70(8):4142–4147PubMedPubMedCentralCrossRef Alonso S, Reveneau N, Pethe K et al (2002) Eighty-kilodalton N-terminal moiety of Bordetella pertussis filamentous hemagglutinin: adherence, immunogenicity, and protective role. Infect Immun 70(8):4142–4147PubMedPubMedCentralCrossRef
124.
go back to reference Nuccio SP, Baumler AJ (2007) Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 71(4):551–575PubMedPubMedCentralCrossRef Nuccio SP, Baumler AJ (2007) Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 71(4):551–575PubMedPubMedCentralCrossRef
125.
go back to reference Chen Q, Decker KB, Boucher PE et al (2010) Novel architectural features of Bordetella pertussis fimbrial subunit promoters and their activation by the global virulence regulator BvgA. Mol Microbiol 77(5):1326–1340PubMedPubMedCentralCrossRef Chen Q, Decker KB, Boucher PE et al (2010) Novel architectural features of Bordetella pertussis fimbrial subunit promoters and their activation by the global virulence regulator BvgA. Mol Microbiol 77(5):1326–1340PubMedPubMedCentralCrossRef
126.
go back to reference Hazenbos WL, van den Berg BM, Geuijen CW et al (1995) Binding of FimD on Bordetella pertussis to very late antigen-5 on monocytes activates complement receptor type 3 via protein tyrosine kinases. J Immunol 155(8):3972–3978PubMed Hazenbos WL, van den Berg BM, Geuijen CW et al (1995) Binding of FimD on Bordetella pertussis to very late antigen-5 on monocytes activates complement receptor type 3 via protein tyrosine kinases. J Immunol 155(8):3972–3978PubMed
127.
go back to reference Geuijen CA, Willems RJ, Bongaerts M et al (1997) Role of the Bordetella pertussis minor fimbrial subunit, FimD, in colonization of the mouse respiratory tract. Infect Immun 65(10):4222–4228PubMedPubMedCentral Geuijen CA, Willems RJ, Bongaerts M et al (1997) Role of the Bordetella pertussis minor fimbrial subunit, FimD, in colonization of the mouse respiratory tract. Infect Immun 65(10):4222–4228PubMedPubMedCentral
128.
go back to reference Guevara C, Zhang C, Gaddy JA et al (2016) Highly differentiated human airway epithelial cells: a model to study host cell-parasite interactions in pertussis. Infect Dis 48(3):177–188CrossRef Guevara C, Zhang C, Gaddy JA et al (2016) Highly differentiated human airway epithelial cells: a model to study host cell-parasite interactions in pertussis. Infect Dis 48(3):177–188CrossRef
129.
go back to reference Irie Y, Mattoo S, Yuk MH (2004) The Bvg virulence control system regulates biofilm formation in Bordetella bronchiseptica. J Bacteriol 186(17):5692–5698PubMedPubMedCentralCrossRef Irie Y, Mattoo S, Yuk MH (2004) The Bvg virulence control system regulates biofilm formation in Bordetella bronchiseptica. J Bacteriol 186(17):5692–5698PubMedPubMedCentralCrossRef
130.
go back to reference van den Berg BM, Beekhuizen H, Mooi FR et al (1999) Role of antibodies against Bordetella pertussis virulence factors in adherence of Bordetella pertussis and Bordetella parapertussis to human bronchial epithelial cells. Infect Immun 67(3):1050–1055PubMedPubMedCentral van den Berg BM, Beekhuizen H, Mooi FR et al (1999) Role of antibodies against Bordetella pertussis virulence factors in adherence of Bordetella pertussis and Bordetella parapertussis to human bronchial epithelial cells. Infect Immun 67(3):1050–1055PubMedPubMedCentral
131.
go back to reference Rodriguez ME, Hellwig SM, Perez Vidakovics ML et al (2006) Bordetella pertussis attachment to respiratory epithelial cells can be impaired by fimbriae-specific antibodies. FEMS Immunol Med Microbiol 46(1):39–47PubMedCrossRef Rodriguez ME, Hellwig SM, Perez Vidakovics ML et al (2006) Bordetella pertussis attachment to respiratory epithelial cells can be impaired by fimbriae-specific antibodies. FEMS Immunol Med Microbiol 46(1):39–47PubMedCrossRef
132.
go back to reference Gustafsson L, Hallander HO, Olin P et al (1996) A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N Engl J Med 334(6):349–355PubMedCrossRef Gustafsson L, Hallander HO, Olin P et al (1996) A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N Engl J Med 334(6):349–355PubMedCrossRef
133.
go back to reference McCormack PL (2013) DTaP-IPV-Hep B-Hib vaccine (Hexaxim(R)): a review of its use in primary and booster vaccination. Paediatr Drugs 15(1):59–70PubMedCrossRef McCormack PL (2013) DTaP-IPV-Hep B-Hib vaccine (Hexaxim(R)): a review of its use in primary and booster vaccination. Paediatr Drugs 15(1):59–70PubMedCrossRef
134.
go back to reference Hallander HO, Ljungman M, Jahnmatz M et al (2009) Should fimbriae be included in pertussis vaccines? Studies on ELISA IgG anti-Fim2/3 antibodies after vaccination and infection. APMIS 117(9):660–671PubMedCrossRef Hallander HO, Ljungman M, Jahnmatz M et al (2009) Should fimbriae be included in pertussis vaccines? Studies on ELISA IgG anti-Fim2/3 antibodies after vaccination and infection. APMIS 117(9):660–671PubMedCrossRef
135.
go back to reference Bart MJ, Harris SR, Advani A et al (2014) Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. MBio 5(2):e01074PubMedPubMedCentralCrossRef Bart MJ, Harris SR, Advani A et al (2014) Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. MBio 5(2):e01074PubMedPubMedCentralCrossRef
136.
137.
138.
go back to reference Shuel M, Jamieson FB, Tang P et al (2013) Genetic analysis of Bordetella pertussis in Ontario, Canada reveals one predominant clone. Int J Infect Dis 17(6):e413-417CrossRef Shuel M, Jamieson FB, Tang P et al (2013) Genetic analysis of Bordetella pertussis in Ontario, Canada reveals one predominant clone. Int J Infect Dis 17(6):e413-417CrossRef
140.
go back to reference Borisova O, Kombarova SY, Zakharova NS et al (2007) Antigenic divergence between Bordetella pertussis clinical isolates from Moscow, Russia, and vaccine strains. Clin Vaccine Immunol 14(3):234–238PubMedPubMedCentralCrossRef Borisova O, Kombarova SY, Zakharova NS et al (2007) Antigenic divergence between Bordetella pertussis clinical isolates from Moscow, Russia, and vaccine strains. Clin Vaccine Immunol 14(3):234–238PubMedPubMedCentralCrossRef
141.
go back to reference Dakic G, Kallonen T, Elomaa A et al (2010) Bordetella pertussis vaccine strains and circulating isolates in Serbia. Vaccine 28(5):1188–1192PubMedCrossRef Dakic G, Kallonen T, Elomaa A et al (2010) Bordetella pertussis vaccine strains and circulating isolates in Serbia. Vaccine 28(5):1188–1192PubMedCrossRef
142.
go back to reference Advani A, Donnelly D, Gustafsson L et al (2007) Changes of the Swedish Bordetella pertussis population in incidence peaks during an acellular pertussis vaccine period between 1997 and 2004. APMIS 115(4):299–310PubMedCrossRef Advani A, Donnelly D, Gustafsson L et al (2007) Changes of the Swedish Bordetella pertussis population in incidence peaks during an acellular pertussis vaccine period between 1997 and 2004. APMIS 115(4):299–310PubMedCrossRef
143.
144.
go back to reference Yuk MH, Harvill ET, Miller JF (1998) The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol 28(5):945–959PubMedCrossRef Yuk MH, Harvill ET, Miller JF (1998) The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol 28(5):945–959PubMedCrossRef
145.
146.
go back to reference Ahuja U, Shokeen B, Cheng N et al (2016) Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-sigma factor. Proc Natl Acad Sci 113(9):2341–2348PubMedPubMedCentralCrossRef Ahuja U, Shokeen B, Cheng N et al (2016) Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-sigma factor. Proc Natl Acad Sci 113(9):2341–2348PubMedPubMedCentralCrossRef
147.
go back to reference Han HJ, Kuwae A, Abe A et al (2011) Differential expression of type III effector BteA protein due to IS481 insertion in Bordetella pertussis. PLoS One 6(3):e17797PubMedPubMedCentralCrossRef Han HJ, Kuwae A, Abe A et al (2011) Differential expression of type III effector BteA protein due to IS481 insertion in Bordetella pertussis. PLoS One 6(3):e17797PubMedPubMedCentralCrossRef
148.
go back to reference Fennelly NK, Sisti F, Higgins SC et al (2008) Bordetella pertussis expresses a functional type III secretion system that subverts protective innate and adaptive immune responses. Infect Immun 76(3):1257–1266PubMedPubMedCentralCrossRef Fennelly NK, Sisti F, Higgins SC et al (2008) Bordetella pertussis expresses a functional type III secretion system that subverts protective innate and adaptive immune responses. Infect Immun 76(3):1257–1266PubMedPubMedCentralCrossRef
149.
go back to reference Brickman TJ, Hanawa T, Anderson MT et al (2008) Differential expression of Bordetella pertussis iron transport system genes during infection. Mol Microbiol 70(1):3–14PubMedPubMedCentralCrossRef Brickman TJ, Hanawa T, Anderson MT et al (2008) Differential expression of Bordetella pertussis iron transport system genes during infection. Mol Microbiol 70(1):3–14PubMedPubMedCentralCrossRef
150.
go back to reference Alvarez Hayes J, Erben E, Lamberti Y et al (2011) Identification of a new protective antigen of Bordetella pertussis. Vaccine 29(47):8731–8739PubMedCrossRef Alvarez Hayes J, Erben E, Lamberti Y et al (2011) Identification of a new protective antigen of Bordetella pertussis. Vaccine 29(47):8731–8739PubMedCrossRef
151.
go back to reference Banerjee S, Weerasinghe AJ, Parker Siburt CJ et al (2014) Bordetella pertussis FbpA binds both unchelated iron and iron siderophore complexes. BioChemistry 53(24):3952–3960PubMedPubMedCentralCrossRef Banerjee S, Weerasinghe AJ, Parker Siburt CJ et al (2014) Bordetella pertussis FbpA binds both unchelated iron and iron siderophore complexes. BioChemistry 53(24):3952–3960PubMedPubMedCentralCrossRef
152.
go back to reference Flak TA, Goldman WE (1999) Signalling and cellular specificity of airway nitric oxide production in pertussis. Cell Microbiol 1(1):51–60PubMedCrossRef Flak TA, Goldman WE (1999) Signalling and cellular specificity of airway nitric oxide production in pertussis. Cell Microbiol 1(1):51–60PubMedCrossRef
153.
go back to reference Fedele G, Nasso M, Spensieri F et al (2008) Lipopolysaccharides from Bordetella pertussis and Bordetella parapertussis differently modulate human dendritic cell functions resulting in divergent prevalence of Th17-polarized responses. J Immunol 181(1):208–216PubMedCrossRef Fedele G, Nasso M, Spensieri F et al (2008) Lipopolysaccharides from Bordetella pertussis and Bordetella parapertussis differently modulate human dendritic cell functions resulting in divergent prevalence of Th17-polarized responses. J Immunol 181(1):208–216PubMedCrossRef
154.
go back to reference Albitar-Nehme S, Basheer SM, Njamkepo E et al (2013) Comparison of lipopolysaccharide structures of Bordetella pertussis clinical isolates from pre- and post-vaccine era. Carbohydr Res 378:56–62PubMedCrossRef Albitar-Nehme S, Basheer SM, Njamkepo E et al (2013) Comparison of lipopolysaccharide structures of Bordetella pertussis clinical isolates from pre- and post-vaccine era. Carbohydr Res 378:56–62PubMedCrossRef
155.
go back to reference Mishra M, Parise G, Jackson KD et al (2005) The BvgAS signal transduction system regulates biofilm development in Bordetella. J Bacteriol 187(4):1474–1484PubMedPubMedCentralCrossRef Mishra M, Parise G, Jackson KD et al (2005) The BvgAS signal transduction system regulates biofilm development in Bordetella. J Bacteriol 187(4):1474–1484PubMedPubMedCentralCrossRef
156.
go back to reference Patel R (2005) Biofilms and antimicrobial resistance. Clin Orthop Relat Res (437):41–47 Patel R (2005) Biofilms and antimicrobial resistance. Clin Orthop Relat Res (437):41–47
157.
go back to reference Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105PubMed Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105PubMed
158.
go back to reference Otto M (2006) Bacterial evasion of antimicrobial peptides by biofilm formation. Curr Top Microbiol Immunol 306:251–258PubMed Otto M (2006) Bacterial evasion of antimicrobial peptides by biofilm formation. Curr Top Microbiol Immunol 306:251–258PubMed
160.
go back to reference Nicholson TL, Conover MS, Deora R (2012) Transcriptome profiling reveals stage-specific production and requirement of flagella during biofilm development in Bordetella bronchiseptica. PLoS One 7(11):e49166PubMedPubMedCentralCrossRef Nicholson TL, Conover MS, Deora R (2012) Transcriptome profiling reveals stage-specific production and requirement of flagella during biofilm development in Bordetella bronchiseptica. PLoS One 7(11):e49166PubMedPubMedCentralCrossRef
161.
go back to reference Serra DO, Conover MS, Arnal L et al (2011) FHA-mediated cell-substrate and cell-cell adhesions are critical for Bordetella pertussis biofilm formation on abiotic surfaces and in the mouse nose and the trachea. PLoS One 6(12):e28811PubMedPubMedCentralCrossRef Serra DO, Conover MS, Arnal L et al (2011) FHA-mediated cell-substrate and cell-cell adhesions are critical for Bordetella pertussis biofilm formation on abiotic surfaces and in the mouse nose and the trachea. PLoS One 6(12):e28811PubMedPubMedCentralCrossRef
162.
go back to reference Hoffman C, Eby J, Gray M et al (2017) Bordetella adenylate cyclase toxin interacts with filamentous haemagglutinin to inhibit biofilm formation in vitro. Mol Microbiol 103(2):214–228PubMedCrossRef Hoffman C, Eby J, Gray M et al (2017) Bordetella adenylate cyclase toxin interacts with filamentous haemagglutinin to inhibit biofilm formation in vitro. Mol Microbiol 103(2):214–228PubMedCrossRef
163.
go back to reference Conover MS, Redfern CJ, Ganguly T et al (2012) BpsR modulates Bordetella biofilm formation by negatively regulating the expression of the Bps polysaccharide. J Bacteriol 194(2):233–242PubMedPubMedCentralCrossRef Conover MS, Redfern CJ, Ganguly T et al (2012) BpsR modulates Bordetella biofilm formation by negatively regulating the expression of the Bps polysaccharide. J Bacteriol 194(2):233–242PubMedPubMedCentralCrossRef
164.
go back to reference Little DJ, Milek S, Bamford NC et al (2015) The protein BpsB is a poly-beta-1,6-N-acetyl-d-glucosamine deacetylase required for biofilm formation in Bordetella bronchiseptica. J Biol Chem 290(37):22827–22840PubMedPubMedCentralCrossRef Little DJ, Milek S, Bamford NC et al (2015) The protein BpsB is a poly-beta-1,6-N-acetyl-d-glucosamine deacetylase required for biofilm formation in Bordetella bronchiseptica. J Biol Chem 290(37):22827–22840PubMedPubMedCentralCrossRef
165.
go back to reference Sloan GP, Love CF, Sukumar N et al (2007) The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract. J Bacteriol 189(22):8270–8276PubMedPubMedCentralCrossRef Sloan GP, Love CF, Sukumar N et al (2007) The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract. J Bacteriol 189(22):8270–8276PubMedPubMedCentralCrossRef
166.
go back to reference Conover MS, Mishra M, Deora R (2011) Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. PLoS One 6(2):e16861PubMedPubMedCentralCrossRef Conover MS, Mishra M, Deora R (2011) Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. PLoS One 6(2):e16861PubMedPubMedCentralCrossRef
167.
go back to reference Dorji D, Graham RM, Richmond P et al (2016) Biofilm forming potential and antimicrobial susceptibility of newly emerged Western Australian Bordetella pertussis clinical isolates. Biofouling 32(9):1141–1152PubMedCrossRef Dorji D, Graham RM, Richmond P et al (2016) Biofilm forming potential and antimicrobial susceptibility of newly emerged Western Australian Bordetella pertussis clinical isolates. Biofouling 32(9):1141–1152PubMedCrossRef
168.
go back to reference Arnal L, Grunert T, Cattelan N et al (2015) Bordetella pertussis isolates from Argentinean whooping cough patients display enhanced biofilm formation capacity compared to Tohama I reference strain. Front Microbiol 6:1352PubMedPubMedCentralCrossRef Arnal L, Grunert T, Cattelan N et al (2015) Bordetella pertussis isolates from Argentinean whooping cough patients display enhanced biofilm formation capacity compared to Tohama I reference strain. Front Microbiol 6:1352PubMedPubMedCentralCrossRef
169.
go back to reference Cattelan N, Jennings-Gee J, Dubey P et al (2017) Hyperbiofilm formation by Bordetella pertussis strains correlates with enhanced virulence traits. Infect Immun. doi:10.1128/IAI.00373-17 PubMed Cattelan N, Jennings-Gee J, Dubey P et al (2017) Hyperbiofilm formation by Bordetella pertussis strains correlates with enhanced virulence traits. Infect Immun. doi:10.​1128/​IAI.​00373-17 PubMed
170.
go back to reference Bhinu VS (2005) Insight into biofilm-associated microbial life. J Mol Microbiol Biotechnol 10(1):15–21PubMedCrossRef Bhinu VS (2005) Insight into biofilm-associated microbial life. J Mol Microbiol Biotechnol 10(1):15–21PubMedCrossRef
171.
go back to reference Serra D, Bosch A, Russo DM et al (2007) Continuous nondestructive monitoring of Bordetella pertussis biofilms by Fourier transform infrared spectroscopy and other corroborative techniques. Anal Bioanal Chem 387(5):1759–1767PubMedCrossRef Serra D, Bosch A, Russo DM et al (2007) Continuous nondestructive monitoring of Bordetella pertussis biofilms by Fourier transform infrared spectroscopy and other corroborative techniques. Anal Bioanal Chem 387(5):1759–1767PubMedCrossRef
172.
go back to reference Serra DO, Lucking G, Weiland F et al (2008) Proteome approaches combined with Fourier transform infrared spectroscopy revealed a distinctive biofilm physiology in Bordetella pertussis. Proteomics 8(23–24):4995–5010PubMedCrossRef Serra DO, Lucking G, Weiland F et al (2008) Proteome approaches combined with Fourier transform infrared spectroscopy revealed a distinctive biofilm physiology in Bordetella pertussis. Proteomics 8(23–24):4995–5010PubMedCrossRef
173.
go back to reference Bosch A, Serra D, Prieto C et al (2006) Characterization of Bordetella pertussis growing as biofilm by chemical analysis and FT-IR spectroscopy. Appl Microbiol Biotechnol 71(5):736–747PubMedCrossRef Bosch A, Serra D, Prieto C et al (2006) Characterization of Bordetella pertussis growing as biofilm by chemical analysis and FT-IR spectroscopy. Appl Microbiol Biotechnol 71(5):736–747PubMedCrossRef
174.
go back to reference Bancroft T, Dillon MB, da Silva Antunes R et al (2016) Th1 versus Th2 T cell polarization by whole-cell and acellular childhood pertussis vaccines persists upon re-immunization in adolescence and adulthood. Cell Immunol 304–305:35–43PubMedPubMedCentralCrossRef Bancroft T, Dillon MB, da Silva Antunes R et al (2016) Th1 versus Th2 T cell polarization by whole-cell and acellular childhood pertussis vaccines persists upon re-immunization in adolescence and adulthood. Cell Immunol 304–305:35–43PubMedPubMedCentralCrossRef
175.
go back to reference Mills KH, Barnard A, Watkins J et al (1993) Cell-mediated immunity to Bordetella pertussis: role of Th1 cells in bacterial clearance in a murine respiratory infection model. Infect Immun 61(2):399–410PubMedPubMedCentral Mills KH, Barnard A, Watkins J et al (1993) Cell-mediated immunity to Bordetella pertussis: role of Th1 cells in bacterial clearance in a murine respiratory infection model. Infect Immun 61(2):399–410PubMedPubMedCentral
176.
go back to reference Rieber N, Graf A, Hartl D et al (2011) Acellular pertussis booster in adolescents induces Th1 and memory CD8+ T cell immune response. PLoS One 6(3):e17271PubMedPubMedCentralCrossRef Rieber N, Graf A, Hartl D et al (2011) Acellular pertussis booster in adolescents induces Th1 and memory CD8+ T cell immune response. PLoS One 6(3):e17271PubMedPubMedCentralCrossRef
177.
178.
go back to reference Culotta CE, Dominick D, ER H (1935) Whooping cough. II. Experimental study. J Pediatr 6:743–752CrossRef Culotta CE, Dominick D, ER H (1935) Whooping cough. II. Experimental study. J Pediatr 6:743–752CrossRef
179.
go back to reference Warfel JM, Zimmerman LI, Merkel TJ (2014) Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci USA 111(2):787–792PubMedCrossRef Warfel JM, Zimmerman LI, Merkel TJ (2014) Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci USA 111(2):787–792PubMedCrossRef
180.
go back to reference Hozbor D, Rodriguez ME, Fernandez J et al (1999) Release of outer membrane vesicles from Bordetella pertussis. Curr Microbiol 38(5):273–278PubMedCrossRef Hozbor D, Rodriguez ME, Fernandez J et al (1999) Release of outer membrane vesicles from Bordetella pertussis. Curr Microbiol 38(5):273–278PubMedCrossRef
181.
go back to reference Raeven RH, van der Maas L, Tilstra W et al (2015) Immunoproteomic profiling of Bordetella pertussis outer membrane vesicle vaccine reveals broad and balanced humoral immunogenicity. J Proteome Res 14(7):2929–2942PubMedCrossRef Raeven RH, van der Maas L, Tilstra W et al (2015) Immunoproteomic profiling of Bordetella pertussis outer membrane vesicle vaccine reveals broad and balanced humoral immunogenicity. J Proteome Res 14(7):2929–2942PubMedCrossRef
182.
go back to reference Ulmer JB, Donnelly JJ, Parker SE et al (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259(5102):1745–1749PubMedCrossRef Ulmer JB, Donnelly JJ, Parker SE et al (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259(5102):1745–1749PubMedCrossRef
183.
go back to reference Kamachi K, Konda T, Arakawa Y (2003) DNA vaccine encoding pertussis toxin S1 subunit induces protection against Bordetella pertussis in mice. Vaccine 21(31):4609–4615PubMedCrossRef Kamachi K, Konda T, Arakawa Y (2003) DNA vaccine encoding pertussis toxin S1 subunit induces protection against Bordetella pertussis in mice. Vaccine 21(31):4609–4615PubMedCrossRef
184.
go back to reference Kamachi K, Arakawa Y (2007) Development of safer pertussis DNA vaccine expressing non-toxic C180 polypeptide of pertussis toxin S1 subunit. Vaccine 25(6):1000–1006PubMedCrossRef Kamachi K, Arakawa Y (2007) Development of safer pertussis DNA vaccine expressing non-toxic C180 polypeptide of pertussis toxin S1 subunit. Vaccine 25(6):1000–1006PubMedCrossRef
185.
go back to reference Kamachi K, Arakawa Y (2004) Expression of a C terminally truncated form of pertussis toxin S1 subunit effectively induces protection against pertussis toxin following DNA-based immunization. Infect Immun 72(7):4293–4296PubMedPubMedCentralCrossRef Kamachi K, Arakawa Y (2004) Expression of a C terminally truncated form of pertussis toxin S1 subunit effectively induces protection against pertussis toxin following DNA-based immunization. Infect Immun 72(7):4293–4296PubMedPubMedCentralCrossRef
186.
go back to reference Li Q, Zhu Y, Chu J et al (2006) Protective immunity against Bordetella pertussis by a recombinant DNA vaccine and the effect of coinjection with a granulocyte-macrophage colony stimulating factor gene. Microbiol Immunol 50(12):929–936PubMedCrossRef Li Q, Zhu Y, Chu J et al (2006) Protective immunity against Bordetella pertussis by a recombinant DNA vaccine and the effect of coinjection with a granulocyte-macrophage colony stimulating factor gene. Microbiol Immunol 50(12):929–936PubMedCrossRef
187.
go back to reference Fry SR, Chen AY, Daggard GE et al (2016) Bordetella pertussis filamentous hemagglutinin and pertactin DNA vaccines. Curr Trends Microbiol 10:95 Fry SR, Chen AY, Daggard GE et al (2016) Bordetella pertussis filamentous hemagglutinin and pertactin DNA vaccines. Curr Trends Microbiol 10:95
188.
go back to reference Guzman CA, Molinari G, Fountain MW et al (1993) Antibody responses in the serum and respiratory tract of mice following oral vaccination with liposomes coated with filamentous hemagglutinin and pertussis toxoid. Infect Immun 61(2):573–579PubMedPubMedCentral Guzman CA, Molinari G, Fountain MW et al (1993) Antibody responses in the serum and respiratory tract of mice following oral vaccination with liposomes coated with filamentous hemagglutinin and pertussis toxoid. Infect Immun 61(2):573–579PubMedPubMedCentral
189.
go back to reference Conway MA, Madrigal-Estebas L, McClean S et al (2001) Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19(15–16):1940–1950PubMedCrossRef Conway MA, Madrigal-Estebas L, McClean S et al (2001) Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19(15–16):1940–1950PubMedCrossRef
190.
191.
go back to reference Angsantikul P, Thamphiwatana S, Gao W et al (2015) Cell membrane-coated nanoparticles as an emerging antibacterial vaccine platform. Vaccines (Basel) 3(4):814–828CrossRef Angsantikul P, Thamphiwatana S, Gao W et al (2015) Cell membrane-coated nanoparticles as an emerging antibacterial vaccine platform. Vaccines (Basel) 3(4):814–828CrossRef
192.
go back to reference Roberts M, Maskell D, Novotny P et al (1990) Construction and characterization in vivo of Bordetella pertussis aroA mutants. Infect Immun 58(3):732–739PubMedPubMedCentral Roberts M, Maskell D, Novotny P et al (1990) Construction and characterization in vivo of Bordetella pertussis aroA mutants. Infect Immun 58(3):732–739PubMedPubMedCentral
193.
go back to reference Siniashina LN, Siniashina LS, Semin EG et al (2010) Construction of the genetically attenuated bacteria Bordetella pertussis devoid of dermonecrotic toxin activity and producing modified nontoxic pertussis toxin form. Mol Gen Mikrobiol Virusol (3):31–36 Siniashina LN, Siniashina LS, Semin EG et al (2010) Construction of the genetically attenuated bacteria Bordetella pertussis devoid of dermonecrotic toxin activity and producing modified nontoxic pertussis toxin form. Mol Gen Mikrobiol Virusol (3):31–36
194.
195.
go back to reference Feunou PF, Kammoun H, Debrie AS et al (2010) Long-term immunity against pertussis induced by a single nasal administration of live attenuated B. pertussis BPZE1. Vaccine 28(43):7047–7053PubMedCrossRef Feunou PF, Kammoun H, Debrie AS et al (2010) Long-term immunity against pertussis induced by a single nasal administration of live attenuated B. pertussis BPZE1. Vaccine 28(43):7047–7053PubMedCrossRef
196.
go back to reference Fedele G, Bianco M, Debrie AS et al (2011) Attenuated Bordetella pertussis vaccine candidate BPZE1 promotes human dendritic cell CCL21-induced migration and drives a Th1/Th17 response. J Immunol 186(9):5388–5396PubMedCrossRef Fedele G, Bianco M, Debrie AS et al (2011) Attenuated Bordetella pertussis vaccine candidate BPZE1 promotes human dendritic cell CCL21-induced migration and drives a Th1/Th17 response. J Immunol 186(9):5388–5396PubMedCrossRef
197.
go back to reference Thorstensson R, Trollfors B, Al-Tawil N et al (2014) A phase I clinical study of a live attenuated Bordetella pertussis vaccine-BPZE1; a single centre, double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally to healthy adult male volunteers. PLoS One 9(1):e83449PubMedPubMedCentralCrossRef Thorstensson R, Trollfors B, Al-Tawil N et al (2014) A phase I clinical study of a live attenuated Bordetella pertussis vaccine-BPZE1; a single centre, double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally to healthy adult male volunteers. PLoS One 9(1):e83449PubMedPubMedCentralCrossRef
198.
go back to reference Jahnmatz M, Amu S, Ljungman M et al (2014) B-cell responses after intranasal vaccination with the novel attenuated Bordetella pertussis vaccine strain BPZE1 in a randomized phase I clinical trial. Vaccine 32(27):3350–3356PubMedCrossRef Jahnmatz M, Amu S, Ljungman M et al (2014) B-cell responses after intranasal vaccination with the novel attenuated Bordetella pertussis vaccine strain BPZE1 in a randomized phase I clinical trial. Vaccine 32(27):3350–3356PubMedCrossRef
199.
go back to reference Tan T, Trindade E, Skowronski D (2005) Epidemiology of pertussis. Pediatr Infect Dis J 24(5 Suppl):S10–S18PubMedCrossRef Tan T, Trindade E, Skowronski D (2005) Epidemiology of pertussis. Pediatr Infect Dis J 24(5 Suppl):S10–S18PubMedCrossRef
200.
201.
go back to reference Dunne A, Mielke LA, Allen AC et al (2015) A novel TLR2 agonist from Bordetella pertussis is a potent adjuvant that promotes protective immunity with an acellular pertussis vaccine. Mucosal Immunol 8(3):607–617PubMedCrossRef Dunne A, Mielke LA, Allen AC et al (2015) A novel TLR2 agonist from Bordetella pertussis is a potent adjuvant that promotes protective immunity with an acellular pertussis vaccine. Mucosal Immunol 8(3):607–617PubMedCrossRef
202.
go back to reference Geurtsen J, Banus HA, Gremmer ER et al (2007) Lipopolysaccharide analogs improve efficacy of acellular pertussis vaccine and reduce type I hypersensitivity in mice. Clin Vaccine Immunol 14(7):821–829PubMedPubMedCentralCrossRef Geurtsen J, Banus HA, Gremmer ER et al (2007) Lipopolysaccharide analogs improve efficacy of acellular pertussis vaccine and reduce type I hypersensitivity in mice. Clin Vaccine Immunol 14(7):821–829PubMedPubMedCentralCrossRef
203.
go back to reference Agnolon V, Bruno C, Leuzzi R et al (2015) The potential of adjuvants to improve immune responses against TdaP vaccines: a preclinical evaluation of MF59 and monophosphoryl lipid A. Int J Pharm 492(1–2):169–176PubMedCrossRef Agnolon V, Bruno C, Leuzzi R et al (2015) The potential of adjuvants to improve immune responses against TdaP vaccines: a preclinical evaluation of MF59 and monophosphoryl lipid A. Int J Pharm 492(1–2):169–176PubMedCrossRef
204.
go back to reference Cherry JD, Heininger U, Richards DM et al (2010) Antibody response patterns to Bordetella pertussis antigens in vaccinated (primed) and unvaccinated (unprimed) young children with pertussis. Clin Vaccine Immunol 17(5):741–747PubMedPubMedCentralCrossRef Cherry JD, Heininger U, Richards DM et al (2010) Antibody response patterns to Bordetella pertussis antigens in vaccinated (primed) and unvaccinated (unprimed) young children with pertussis. Clin Vaccine Immunol 17(5):741–747PubMedPubMedCentralCrossRef
205.
go back to reference Hallander HO, Gustafsson L (2009) Efficacy and effectiveness of acellular pertussis vaccines: a 20-year Swedish experience. Expert Rev Vaccines 8(10):1303–1307PubMedCrossRef Hallander HO, Gustafsson L (2009) Efficacy and effectiveness of acellular pertussis vaccines: a 20-year Swedish experience. Expert Rev Vaccines 8(10):1303–1307PubMedCrossRef
206.
go back to reference Carbonetti NH, Wirsing von Konig CH, Lan R et al (2016) Highlights of the 11th International Bordetella symposium: from basic biology to vaccine development. Clin Vaccine Immunol 23(11):842–850PubMedPubMedCentralCrossRef Carbonetti NH, Wirsing von Konig CH, Lan R et al (2016) Highlights of the 11th International Bordetella symposium: from basic biology to vaccine development. Clin Vaccine Immunol 23(11):842–850PubMedPubMedCentralCrossRef
Metadata
Title
Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance
Authors
Dorji Dorji
Frits Mooi
Osvaldo Yantorno
Rajendar Deora
Ross M. Graham
Trilochan K. Mukkur
Publication date
01-02-2018
Publisher
Springer Berlin Heidelberg
Published in
Medical Microbiology and Immunology / Issue 1/2018
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-017-0524-z

Other articles of this Issue 1/2018

Medical Microbiology and Immunology 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine