Skip to main content
Top
Published in: BMC Neurology 1/2021

Open Access 01-12-2021 | Leukodystrophy | Case report

A novel case of concurrent occurrence of demyelinating-polyneuropathy-causing PMP22 duplication and SOX10 gene mutation producing severe hypertrophic neuropathy

Authors: Nozomu Matsuda, Koushi Ootsuki, Shunsuke Kobayashi, Ayaka Nemoto, Hitoshi Kubo, Shin-ichi Usami, Kazuaki Kanani

Published in: BMC Neurology | Issue 1/2021

Login to get access

Abstract

Background

Hereditary motor and sensory neuropathy, also referred to as Charcot–Marie–Tooth disease (CMT), is most often caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. This duplication causes CMT type 1A (CMT1A). CMT1A rarely occurs in combination with other hereditary neuromuscular disorders. However, such rare genetic coincidences produce a severe phenotype and have been reported in terms of “double trouble” overlapping syndrome. Waardenburg syndrome (WS) is the most common form of a hereditary syndromic deafness. It is primarily characterized by pigmentation anomalies and classified into four major phenotypes. A mutation in the SRY sex determining region Y-box 10 (SOX10) gene causes WS type 2 or 4 and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, WS, and Hirschsprung disease. We describe a 11-year-old boy with extreme hypertrophic neuropathy because of a combination of CMT1A and WS type 2. This is the first published case on the co-occurrence of CMT1A and WS type 2.

Case presentation

The 11-year-old boy presented with motor developmental delay and a deterioration in unstable walking at 6 years of age. In addition, he had congenital hearing loss and heterochromia iridis. The neurological examination revealed weakness in the distal limbs with pes cavus. He was diagnosed with CMT1A by the fluorescence in situ hybridization method. His paternal pedigree had a history of CMT1A. However, no family member had congenital hearing loss. His clinical manifestation was apparently severe than those of his relatives with CMT1A. In addition, a whole-body magnetic resonance neurography revealed an extreme enlargement of his systemic cranial and spinal nerves. Subsequently, a genetic analysis revealed a heterozygous frameshift mutation c.876delT (p.F292Lfs*19) in the SOX10 gene. He was eventually diagnosed with WS type 2.

Conclusions

We described a patient with a genetically confirmed overlapping diagnoses of CMT1A and WS type 2. The double trouble with the genes created a significant impact on the peripheral nerves system. Severe phenotype in the proband can be attributed to the cumulative effect of mutations in both PMP22 and SOX10 genes, responsible for demyelinating neuropathy.
Literature
1.
go back to reference Pipis M, Rossor AM, Laura M, Reilly MM. Next-generation sequencing in Charcot-Marie-tooth disease: opportunities and challenges. Nat Rev Neurol. 2019;15:644–56.CrossRef Pipis M, Rossor AM, Laura M, Reilly MM. Next-generation sequencing in Charcot-Marie-tooth disease: opportunities and challenges. Nat Rev Neurol. 2019;15:644–56.CrossRef
2.
go back to reference Yoshimura A, Yuan JH, Hashiguchi A, Ando M, Higuchi Y, Nakamura T, et al. Genetic profile and onset features of 1005 patients with Charcot-Marie-tooth disease in Japan. J Neurol Neurosurg Psychiatry. 2019;90:195–202.CrossRef Yoshimura A, Yuan JH, Hashiguchi A, Ando M, Higuchi Y, Nakamura T, et al. Genetic profile and onset features of 1005 patients with Charcot-Marie-tooth disease in Japan. J Neurol Neurosurg Psychiatry. 2019;90:195–202.CrossRef
3.
go back to reference Lupski JR, de Oca-Luna RM, Slaugenhaupt S, Pentao L, Guzzetta V, Trask BJ, et al. DNA duplication associated with Charcot-Marie-tooth disease type 1A. Cell. 1991;66:219–32.CrossRef Lupski JR, de Oca-Luna RM, Slaugenhaupt S, Pentao L, Guzzetta V, Trask BJ, et al. DNA duplication associated with Charcot-Marie-tooth disease type 1A. Cell. 1991;66:219–32.CrossRef
4.
go back to reference Chance PF, Alderson MK, Leppig KA, Lensch MW, Matsunami N, Smith B, et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell. 1993;72:143–51.CrossRef Chance PF, Alderson MK, Leppig KA, Lensch MW, Matsunami N, Smith B, et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell. 1993;72:143–51.CrossRef
5.
go back to reference Song J, Feng Y, Acke FR, Coucke P, Vleminckx K, Dhooge IJ. Hearing loss in Waardenburg syndrome: a systematic review. Clin Genet. 2016;89:416–25.CrossRef Song J, Feng Y, Acke FR, Coucke P, Vleminckx K, Dhooge IJ. Hearing loss in Waardenburg syndrome: a systematic review. Clin Genet. 2016;89:416–25.CrossRef
6.
go back to reference Minami SB, Nara K, Mutai H, Morimoto N, Sakamoto H, Takiguchi T, et al. A clinical and genetic study of 16 Japanese families with Waardenburg syndrome. Gene. 2019;704:86–90.CrossRef Minami SB, Nara K, Mutai H, Morimoto N, Sakamoto H, Takiguchi T, et al. A clinical and genetic study of 16 Japanese families with Waardenburg syndrome. Gene. 2019;704:86–90.CrossRef
7.
go back to reference Inoue K, Tanabe Y, Lupski JR. Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol. 1999;46:313–8.CrossRef Inoue K, Tanabe Y, Lupski JR. Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol. 1999;46:313–8.CrossRef
8.
go back to reference Inoue K, Khajavi M, Ohyama T, Hirabayashi S, Wilson J, Reggin JD, et al. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet. 2004;36:361–9.CrossRef Inoue K, Khajavi M, Ohyama T, Hirabayashi S, Wilson J, Reggin JD, et al. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet. 2004;36:361–9.CrossRef
9.
go back to reference Burke EA, Reichard KE, Wolfe LA, Brooks BP, DiGiovanna JJ, Hadley DW, et al. A novel frameshift mutation in SOX10 causes Waardenburg syndrome with peripheral demyelinating neuropathy, visual impairment and the absence of Hirschsprung disease. Am J Med Genet A. 2020;182:1278–83.CrossRef Burke EA, Reichard KE, Wolfe LA, Brooks BP, DiGiovanna JJ, Hadley DW, et al. A novel frameshift mutation in SOX10 causes Waardenburg syndrome with peripheral demyelinating neuropathy, visual impairment and the absence of Hirschsprung disease. Am J Med Genet A. 2020;182:1278–83.CrossRef
10.
go back to reference Nishio SY, Hayashi Y, Watanabe M, Usami S. Clinical application of a custom AmpliSeq library and ion torrent PGM sequencing to comprehensive mutation screening for deafness genes. Genet Test Mol Biomarkers. 2015;19:209–17.CrossRef Nishio SY, Hayashi Y, Watanabe M, Usami S. Clinical application of a custom AmpliSeq library and ion torrent PGM sequencing to comprehensive mutation screening for deafness genes. Genet Test Mol Biomarkers. 2015;19:209–17.CrossRef
11.
go back to reference Pingault V, Bondurand N, Le Caignec C, Tardieu S, Lemort N, Dubourg O, et al. The SOX10 transcription factor: evaluation as a candidate gene for central and peripheral hereditary myelin disorders. J Neurol. 2001;248:496–9.CrossRef Pingault V, Bondurand N, Le Caignec C, Tardieu S, Lemort N, Dubourg O, et al. The SOX10 transcription factor: evaluation as a candidate gene for central and peripheral hereditary myelin disorders. J Neurol. 2001;248:496–9.CrossRef
12.
go back to reference Bogdanova-Mihaylova P, Alexander MD, Murphy RPJ, Murphy SM. Waardenburg syndrome: a rare cause of inherited neuropathy due to SOX10 mutation. J Peripher Nerv Syst. 2017;22:219–23.CrossRef Bogdanova-Mihaylova P, Alexander MD, Murphy RPJ, Murphy SM. Waardenburg syndrome: a rare cause of inherited neuropathy due to SOX10 mutation. J Peripher Nerv Syst. 2017;22:219–23.CrossRef
13.
go back to reference Bondurand N, Dastot-Le Moal F, Stanchina L, Collot N, Baral V, Marlin S, et al. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. Am J Hum Genet. 2007;81:1169–85.CrossRef Bondurand N, Dastot-Le Moal F, Stanchina L, Collot N, Baral V, Marlin S, et al. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. Am J Hum Genet. 2007;81:1169–85.CrossRef
14.
go back to reference Yiu EM, Brockley CR, Lee KJ, Carroll K, de Valle K, Kennedy R, et al. Peripheral nerve ultrasound in pediatric Charcot-Marie-tooth disease type 1A. Neurology. 2015;84:569–74.CrossRef Yiu EM, Brockley CR, Lee KJ, Carroll K, de Valle K, Kennedy R, et al. Peripheral nerve ultrasound in pediatric Charcot-Marie-tooth disease type 1A. Neurology. 2015;84:569–74.CrossRef
15.
go back to reference Shibuya K, Sugiyama A, Ito S, Misawa S, Sekiguchi Y, Mitsuma S, et al. Reconstruction magnetic resonance neurography in chronic inflammatory demyelinating polyneuropathy. Ann Neurol. 2015;77:333–7.CrossRef Shibuya K, Sugiyama A, Ito S, Misawa S, Sekiguchi Y, Mitsuma S, et al. Reconstruction magnetic resonance neurography in chronic inflammatory demyelinating polyneuropathy. Ann Neurol. 2015;77:333–7.CrossRef
16.
go back to reference Aho TR, Wallace RC, Pitt AM, Sivakumar K. Charcot-Marie-tooth disease: extensive cranial nerve involvement on CT and MR imaging. AJNR Am J Neuroradiol. 2004;25:494–7.PubMedPubMedCentral Aho TR, Wallace RC, Pitt AM, Sivakumar K. Charcot-Marie-tooth disease: extensive cranial nerve involvement on CT and MR imaging. AJNR Am J Neuroradiol. 2004;25:494–7.PubMedPubMedCentral
17.
go back to reference Maki DD, Yousem DM, Corcoran C, Galetta SL. MR imaging of Dejerine-Sottas disease. AJNR Am J Neuroradiol. 1999;20:378–80.PubMedPubMedCentral Maki DD, Yousem DM, Corcoran C, Galetta SL. MR imaging of Dejerine-Sottas disease. AJNR Am J Neuroradiol. 1999;20:378–80.PubMedPubMedCentral
18.
go back to reference Hodapp JA, Carter GT, Lipe HP, Michelson SJ, Kraft GH, Bird TD. Double trouble in hereditary neuropathy: concomitant mutations in the PMP-22 gene and another gene produce novel phenotypes. Arch Neurol. 2006;63:112–7.CrossRef Hodapp JA, Carter GT, Lipe HP, Michelson SJ, Kraft GH, Bird TD. Double trouble in hereditary neuropathy: concomitant mutations in the PMP-22 gene and another gene produce novel phenotypes. Arch Neurol. 2006;63:112–7.CrossRef
19.
go back to reference Meggouh F, de Visser M, Arts WF, De Coo RI, van Schaik IN, Baas F. Early onset neuropathy in a compound form of Charcot-Marie-tooth disease. Ann Neurol. 2005;57:589–91.CrossRef Meggouh F, de Visser M, Arts WF, De Coo RI, van Schaik IN, Baas F. Early onset neuropathy in a compound form of Charcot-Marie-tooth disease. Ann Neurol. 2005;57:589–91.CrossRef
20.
go back to reference Schreiber O, Schneiderat P, Kress W, Rautenstrauss B, Senderek J, Schoser B, et al. Facioscapulohumeral muscular dystrophy and Charcot-Marie-tooth neuropathy 1A - evidence for "double trouble" overlapping syndromes. BMC Med Genet. 2013;14:92.CrossRef Schreiber O, Schneiderat P, Kress W, Rautenstrauss B, Senderek J, Schoser B, et al. Facioscapulohumeral muscular dystrophy and Charcot-Marie-tooth neuropathy 1A - evidence for "double trouble" overlapping syndromes. BMC Med Genet. 2013;14:92.CrossRef
21.
go back to reference Salpietro V, Manole A, Efthymiou S, Houlden H. A review of copy number variants in inherited neuropathies. Curr Genomics. 2018;19:412–9.CrossRef Salpietro V, Manole A, Efthymiou S, Houlden H. A review of copy number variants in inherited neuropathies. Curr Genomics. 2018;19:412–9.CrossRef
22.
go back to reference Cutrupi AN, Brewer MH, Nicholson GA, Kennerson ML. Structural variations causing inherited peripheral neuropathies: a paradigm for understanding genomic organization, chromatin interactions, and gene dysregulation. Mol Genet Genom Med. 2018;6:422–33.CrossRef Cutrupi AN, Brewer MH, Nicholson GA, Kennerson ML. Structural variations causing inherited peripheral neuropathies: a paradigm for understanding genomic organization, chromatin interactions, and gene dysregulation. Mol Genet Genom Med. 2018;6:422–33.CrossRef
23.
go back to reference Pareyson D, Testa D, Morbin M, Erbetta A, Ciano C, Lauria G, et al. Does CMT1A homozygosity cause more severe disease with root hypertrophy and higher CSF proteins? Neurology. 2003;60:1721–2.CrossRef Pareyson D, Testa D, Morbin M, Erbetta A, Ciano C, Lauria G, et al. Does CMT1A homozygosity cause more severe disease with root hypertrophy and higher CSF proteins? Neurology. 2003;60:1721–2.CrossRef
24.
go back to reference Gabriel JM, Erne B, Pareyson D, Sghirlanzoni A, Taroni F, Steck AJ. Gene dosage effects in hereditary peripheral neuropathy. Expression of peripheral myelin protein 22 in Charcot-Marie-tooth disease type 1A and hereditary neuropathy with liability to pressure palsies nerve biopsies. Neurology. 1997;49:1635–40.CrossRef Gabriel JM, Erne B, Pareyson D, Sghirlanzoni A, Taroni F, Steck AJ. Gene dosage effects in hereditary peripheral neuropathy. Expression of peripheral myelin protein 22 in Charcot-Marie-tooth disease type 1A and hereditary neuropathy with liability to pressure palsies nerve biopsies. Neurology. 1997;49:1635–40.CrossRef
25.
go back to reference Schenone A, Nobbio L, Mandich P, Bellone E, Abbruzzese M, Aymar F, et al. Underexpression of messenger RNA for peripheral myelin protein 22 in hereditary neuropathy with liability to pressure palsies. Neurology. 1997;48:445–9.CrossRef Schenone A, Nobbio L, Mandich P, Bellone E, Abbruzzese M, Aymar F, et al. Underexpression of messenger RNA for peripheral myelin protein 22 in hereditary neuropathy with liability to pressure palsies. Neurology. 1997;48:445–9.CrossRef
26.
go back to reference Bondurand N, Sham MH. The role of SOX10 during enteric nervous system development. Dev Biol. 2013;382:330–43.CrossRef Bondurand N, Sham MH. The role of SOX10 during enteric nervous system development. Dev Biol. 2013;382:330–43.CrossRef
27.
go back to reference Jones EA, Lopez-Anido C, Srinivasan R, Krueger C, Chang LW, Nagarajan R, et al. Regulation of the PMP22 gene through an intronic enhancer. J Neurosci. 2011;31:4242–50.CrossRef Jones EA, Lopez-Anido C, Srinivasan R, Krueger C, Chang LW, Nagarajan R, et al. Regulation of the PMP22 gene through an intronic enhancer. J Neurosci. 2011;31:4242–50.CrossRef
28.
go back to reference Lopez-Anido C, Poitelon Y, Gopinath C, Moran JJ, Ma KH, Law WD, et al. Tead1 regulates the expression of peripheral myelin protein 22 during Schwann cell development. Hum Mol Genet. 2016;25:3055–69.PubMedPubMedCentral Lopez-Anido C, Poitelon Y, Gopinath C, Moran JJ, Ma KH, Law WD, et al. Tead1 regulates the expression of peripheral myelin protein 22 during Schwann cell development. Hum Mol Genet. 2016;25:3055–69.PubMedPubMedCentral
29.
go back to reference Tao F, Beecham GW, Rebelo AP, Svaren J, Blanton SH, Moran JJ, et al. Variation in SIPA1L2 is correlated with phenotype modification in Charcot- Marie- tooth disease type 1A. Ann Neurol. 2019;85:316–30.CrossRef Tao F, Beecham GW, Rebelo AP, Svaren J, Blanton SH, Moran JJ, et al. Variation in SIPA1L2 is correlated with phenotype modification in Charcot- Marie- tooth disease type 1A. Ann Neurol. 2019;85:316–30.CrossRef
Metadata
Title
A novel case of concurrent occurrence of demyelinating-polyneuropathy-causing PMP22 duplication and SOX10 gene mutation producing severe hypertrophic neuropathy
Authors
Nozomu Matsuda
Koushi Ootsuki
Shunsuke Kobayashi
Ayaka Nemoto
Hitoshi Kubo
Shin-ichi Usami
Kazuaki Kanani
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Leukodystrophy
Published in
BMC Neurology / Issue 1/2021
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-021-02256-y

Other articles of this Issue 1/2021

BMC Neurology 1/2021 Go to the issue