Skip to main content
Top
Published in: Breast Cancer Research 1/2020

Open Access 01-12-2020 | Letter

Letter to the editor: Response to Giardiello D, Antoniou AC, Mariani L, Easton DF, Steyerberg EW

Authors: Chang Ming, Valeria Viassolo, Nicole Probst-Hensch, Pierre O. Chappuis, Ivo D. Dinov, Maria C. Katapodi

Published in: Breast Cancer Research | Issue 1/2020

Login to get access

Excerpt

We appreciate the opportunity to submit a response to the Letter to the Editor by Giardiello and colleagues [1] addressing our publication in Breast Cancer Research [2]. …
Literature
1.
go back to reference Giardiello D, Antoniou AC, Mariani L, Easton DF, Steyerberg EW. Letter to the editor: a response to Ming’s study on machine learning techniques for personalized breast cancer risk prediction. Breast Cancer Res. 2020;22(1):17.CrossRef Giardiello D, Antoniou AC, Mariani L, Easton DF, Steyerberg EW. Letter to the editor: a response to Ming’s study on machine learning techniques for personalized breast cancer risk prediction. Breast Cancer Res. 2020;22(1):17.CrossRef
2.
go back to reference Ming C, Viassolo V, Probst-Hensch N, Chappuis PO, Dinov ID, Katapodi MC. Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models. Breast Cancer Res. 2019;21(1):75.CrossRef Ming C, Viassolo V, Probst-Hensch N, Chappuis PO, Dinov ID, Katapodi MC. Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models. Breast Cancer Res. 2019;21(1):75.CrossRef
3.
go back to reference Wang X, Huang Y, Li L, Dai H, Song F, Chen K. Assessment of performance of the Gail model for predicting breast cancer risk: a systematic review and meta-analysis with trial sequential analysis. Breast Cancer Res. 2018;20(1):18.CrossRef Wang X, Huang Y, Li L, Dai H, Song F, Chen K. Assessment of performance of the Gail model for predicting breast cancer risk: a systematic review and meta-analysis with trial sequential analysis. Breast Cancer Res. 2018;20(1):18.CrossRef
4.
go back to reference Steyerberg EW, Harrell FE, Borsboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54(8):774–81.CrossRef Steyerberg EW, Harrell FE, Borsboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54(8):774–81.CrossRef
5.
go back to reference Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res. 2016;18(12):e323.CrossRef Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res. 2016;18(12):e323.CrossRef
6.
go back to reference Niculescu-Mizil A, Caruana R. Predicting good probabilities with supervised learning. Proceedings of the 22nd international conference on Machine learning. Bonn: Association for Computing Machinery; 2005. p. 625–32. Niculescu-Mizil A, Caruana R. Predicting good probabilities with supervised learning. Proceedings of the 22nd international conference on Machine learning. Bonn: Association for Computing Machinery; 2005. p. 625–32.
7.
go back to reference Brinton JT, Hendrick RE, Ringham BM, Kriege M, Glueck DH. Improving the diagnostic accuracy of a stratified screening strategy by identifying the optimal risk cutoff. Cancer Causes Control. 2019;30(10):1145–55.CrossRef Brinton JT, Hendrick RE, Ringham BM, Kriege M, Glueck DH. Improving the diagnostic accuracy of a stratified screening strategy by identifying the optimal risk cutoff. Cancer Causes Control. 2019;30(10):1145–55.CrossRef
Metadata
Title
Letter to the editor: Response to Giardiello D, Antoniou AC, Mariani L, Easton DF, Steyerberg EW
Authors
Chang Ming
Valeria Viassolo
Nicole Probst-Hensch
Pierre O. Chappuis
Ivo D. Dinov
Maria C. Katapodi
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2020
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-020-01274-x

Other articles of this Issue 1/2020

Breast Cancer Research 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine