Skip to main content
Top
Published in: Neurology and Therapy 2/2018

Open Access 01-12-2018 | Letter

Letter to the Editor Regarding: A Comprehensive Review on Copemyl®

Authors: Giancarlo Comi, Ferdinando Nicoletti, Pier Luigi Canonico, Diego Centonze

Published in: Neurology and Therapy | Issue 2/2018

Login to get access

Excerpt

We read the review by Annovazzi et al. [1] with great interest. Glatiramer acetate (GA) after the approval of various regulatory agencies has been reliably used for over two decades as first-line treatment for relapsing forms of multiple sclerosis (MS) based on consistent results of multiple clinical trials [25] establishing broad consensus among general neurologists and MS experts. Assessment of the published preclinical and clinical data of Copemyl® (Mylan N.V., Hatfield, UK), a new member of the follow-on glatiramer acetate (FoGA) class, which include some aspects of its biological and immunological properties, as well as results from the randomized controlled trial that resulted in its authorization, is thus of scientific and medical interest. In their recent review article, Annovazzi et al. reported the published information and marketing authorization decision on Copemyl® [1]. The authors raised questions about some drawbacks and limitations of the GATE (Glatiramer Acetate Clinical Trial to Assess Equivalence with Copaxone) study and its open-label extension [6, 7], the most relevant one being the discrepancy between clinical and magnetic resonance (MRI) end points during the double-blind phase of the study, which invalidates the fundamental study design hypothesis and does not comply with EMA (European Medicines Agency) guidelines [8]. However, several additional gaps and inaccuracies were not included in Annovazzi’s review and should be presented to physicians and the scientific community for further resolution in the interest of public health. These are particularly relevant for country-specific decisions on the substitutability of Copaxone® (Teva Pharmaceutical Industries, Petach Tiqva, Israel) with a FoGA, given the concerns for immunogenic risk to individual patients. The EMA stated that GA is neither a small molecule nor a biologic drug but is rather a non-biologic complex drug (NBCD) comprised of up to 1029 polypeptides, sub-sequences of which being antigens that modulate the immune system driving T cell differentiation towards immune tolerant T regulatory (Treg) cells at the expense of autoreactive T helper (Th)1 and Th17 cells. …
Literature
1.
go back to reference Annovazzi P, Bertolotto A, Brescia Morra V, et al. A comprehensive review on Copemyl®. Neurol Ther. 2017;6(2):161–73. Annovazzi P, Bertolotto A, Brescia Morra V, et al. A comprehensive review on Copemyl®. Neurol Ther. 2017;6(2):161–73.
2.
go back to reference Bornstein MB, Miller A, Slagle S, et al. A pilot trial of Cop 1 in exacerbating-remitting multiple sclerosis. N Engl J Med. 1987;317(7):408–14.CrossRefPubMed Bornstein MB, Miller A, Slagle S, et al. A pilot trial of Cop 1 in exacerbating-remitting multiple sclerosis. N Engl J Med. 1987;317(7):408–14.CrossRefPubMed
3.
go back to reference Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging–measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol. 2001;49(3):290–7.CrossRefPubMed Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging–measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol. 2001;49(3):290–7.CrossRefPubMed
4.
go back to reference Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology. 1995;45(7):1268–76.CrossRefPubMed Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology. 1995;45(7):1268–76.CrossRefPubMed
5.
go back to reference Khan O, Rieckmann P, Boyko A, Selmaj K, Zivadinov R. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol. 2013;73(6):705–13.CrossRefPubMed Khan O, Rieckmann P, Boyko A, Selmaj K, Zivadinov R. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol. 2013;73(6):705–13.CrossRefPubMed
6.
go back to reference Cohen J, Belova A, Selmaj K, et al. Equivalence of generic glatiramer acetate in multiple sclerosis: a randomized clinical trial. JAMA Neurol. 2015;72(12):1433–41.CrossRefPubMed Cohen J, Belova A, Selmaj K, et al. Equivalence of generic glatiramer acetate in multiple sclerosis: a randomized clinical trial. JAMA Neurol. 2015;72(12):1433–41.CrossRefPubMed
7.
go back to reference Selmaj K, Barkhof F, Belova AN, et al. Switching from branded to generic glatiramer acetate: 15-month GATE trial extension results. Mult Scler. 2017;23(14):1909–17.CrossRefPubMedPubMedCentral Selmaj K, Barkhof F, Belova AN, et al. Switching from branded to generic glatiramer acetate: 15-month GATE trial extension results. Mult Scler. 2017;23(14):1909–17.CrossRefPubMedPubMedCentral
8.
go back to reference European Medicines Agency. Guideline on clinical investigation of medicinal products for the treatment of multiple sclerosis. EMA/CHMP/771815/2011, Rev. 2. 2015. http://www.ema.europa.eu. Accessed Nov 17, 2017. European Medicines Agency. Guideline on clinical investigation of medicinal products for the treatment of multiple sclerosis. EMA/CHMP/771815/2011, Rev. 2. 2015. http://​www.​ema.​europa.​eu. Accessed Nov 17, 2017.
9.
go back to reference Hasson T, Kolitz S, Towfic F, et al. Functional effects of the antigen glatiramer acetate are complex and tightly associated with its composition. J Neuroimmunol. 2016;290:84–95.CrossRefPubMed Hasson T, Kolitz S, Towfic F, et al. Functional effects of the antigen glatiramer acetate are complex and tightly associated with its composition. J Neuroimmunol. 2016;290:84–95.CrossRefPubMed
10.
go back to reference Kolitz S, Hasson T, Towfic F, et al. Gene expression studies of a human monocyte cell line identify dissimilarities between differently manufactured glatiramoids. Sci Rep. 2015;5:10191.CrossRefPubMedPubMedCentral Kolitz S, Hasson T, Towfic F, et al. Gene expression studies of a human monocyte cell line identify dissimilarities between differently manufactured glatiramoids. Sci Rep. 2015;5:10191.CrossRefPubMedPubMedCentral
11.
go back to reference Kolitz S, Laifenfeld D, Fowler K, et al. Similarities and differences in the gene expression profiles of Glatopa and Copaxone. ECTRIMS 2016. Mult Scler J. 2016;22(Suppl 3):170. Kolitz S, Laifenfeld D, Fowler K, et al. Similarities and differences in the gene expression profiles of Glatopa and Copaxone. ECTRIMS 2016. Mult Scler J. 2016;22(Suppl 3):170.
12.
go back to reference Komlosh A, Pinkert D. Method of determining the molecular weight distribution of glatiramer acetate using multi-angle laser light scattering (MALLS). Publication no. WO2016176649 A1. Application no. PCT/US2016/030277. Google Patents; 2016. Komlosh A, Pinkert D. Method of determining the molecular weight distribution of glatiramer acetate using multi-angle laser light scattering (MALLS). Publication no. WO2016176649 A1. Application no. PCT/US2016/030277. Google Patents; 2016.
13.
go back to reference Laifenfeld D, Hasson T, Kolitz S, et al. Similarities and differences in the gene expression profiles of Copaxone and Polimunol. ECTRIMS 2016. Mult Scler J. 2016;22(Suppl 3):175. Laifenfeld D, Hasson T, Kolitz S, et al. Similarities and differences in the gene expression profiles of Copaxone and Polimunol. ECTRIMS 2016. Mult Scler J. 2016;22(Suppl 3):175.
14.
go back to reference Wells-Knecht K, Denny R, Hasson T, et al. Testing the limits of ion mobility mass spectrometry to compare a nonbiological complex drug product and purported generics—a case study with Copaxone. Spectroscopy. 2017;15(2):29–34. Wells-Knecht K, Denny R, Hasson T, et al. Testing the limits of ion mobility mass spectrometry to compare a nonbiological complex drug product and purported generics—a case study with Copaxone. Spectroscopy. 2017;15(2):29–34.
15.
go back to reference Komlosh A, Hasson T, Wells-Knecht K, et al. Similarities and differences in properties of glatiramer acetate (Copaxone®, Teva) versus polimunol (Synthon) using standard and emerging technologies. Eur J Neurol. 2016;23(Suppl):199. Komlosh A, Hasson T, Wells-Knecht K, et al. Similarities and differences in properties of glatiramer acetate (Copaxone®, Teva) versus polimunol (Synthon) using standard and emerging technologies. Eur J Neurol. 2016;23(Suppl):199.
16.
go back to reference Komlosh A, Krispin R, Papir G, et al. Surface charge distribution, an attribute linked with immunogenicity of nanoparticles, is different for follow-on glatiramer acetate products approved in EU, Russia, Latin America, and USA compared with Copaxone. ECTRIMS 2017. Mult Scler J. 2017;23(Suppl 3):869. Komlosh A, Krispin R, Papir G, et al. Surface charge distribution, an attribute linked with immunogenicity of nanoparticles, is different for follow-on glatiramer acetate products approved in EU, Russia, Latin America, and USA compared with Copaxone. ECTRIMS 2017. Mult Scler J. 2017;23(Suppl 3):869.
17.
go back to reference Timan B, Komlosh A, Beriozkin O, et al. Physicochemical and biological characterization of the European follow-on glatiramer acetate product as compared to Copaxone. ECTRIMS 2017. Mult Scler J. 2017;23(Suppl 3):869. Timan B, Komlosh A, Beriozkin O, et al. Physicochemical and biological characterization of the European follow-on glatiramer acetate product as compared to Copaxone. ECTRIMS 2017. Mult Scler J. 2017;23(Suppl 3):869.
18.
go back to reference Sormani MP, Bonzano L, Roccatagliata L, Mancardi GL, Uccelli A, Bruzzi P. Surrogate endpoints for EDSS worsening in multiple sclerosis. A meta-analytic approach. Neurology. 2010;75(4):302–9.CrossRefPubMed Sormani MP, Bonzano L, Roccatagliata L, Mancardi GL, Uccelli A, Bruzzi P. Surrogate endpoints for EDSS worsening in multiple sclerosis. A meta-analytic approach. Neurology. 2010;75(4):302–9.CrossRefPubMed
19.
go back to reference Comi G, Martinelli V, Rodegher M, et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374:1503–11.CrossRefPubMed Comi G, Martinelli V, Rodegher M, et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374:1503–11.CrossRefPubMed
Metadata
Title
Letter to the Editor Regarding: A Comprehensive Review on Copemyl®
Authors
Giancarlo Comi
Ferdinando Nicoletti
Pier Luigi Canonico
Diego Centonze
Publication date
01-12-2018
Publisher
Springer Healthcare
Published in
Neurology and Therapy / Issue 2/2018
Print ISSN: 2193-8253
Electronic ISSN: 2193-6536
DOI
https://doi.org/10.1007/s40120-018-0115-y

Other articles of this Issue 2/2018

Neurology and Therapy 2/2018 Go to the issue