Skip to main content
Top
Published in: Neurological Sciences 12/2014

01-12-2014 | Original Article

Lentivirus-mediated delivery of sonic hedgehog into the striatum stimulates neuroregeneration in a rat model of Parkinson disease

Authors: Yi Zhang, Weiren Dong, Suiqun Guo, Shu Zhao, Suifen He, Lihua Zhang, Yinjuan Tang, Haihong Wang

Published in: Neurological Sciences | Issue 12/2014

Login to get access

Abstract

Parkinson disease (PD) is a progressive neurodegenerative disorder in which the nigrostriatal pathway, consisting of dopaminergic neuronal projections from the substantia nigra to the striatum, degenerates. Viral transduction is currently the most promising in vivo strategy for delivery of therapeutic proteins into the brain for treatment of PD. Sonic hedgehog (Shh) is necessary for cell proliferation, differentiation and neuroprotection in the central nervous system. In this study, we investigated the effects of overexpressed N-terminal product of SHH (SHH-N) in a PD model rat. A lentiviral vector containing SHH-N was stereotactically injected into the striatum 24 h after a striatal 6-OHDA lesion. We found that overexpressed SHH-N attenuated behavioral deficits and reduced the loss of dopamine neurons in the substantia nigra and the loss of dopamine fibers in the striatum. In addition, fluoro-ruby-labeled nigrostriatal projections were also repaired. Together, our results demonstrate the feasibility and efficacy of using the strategy of lentivirus-mediated Shh-N delivery to delay nigrostriatal pathway degeneration. This strategy holds the potential for therapeutic application in the treatment of PD.
Appendix
Available only for authorised users
Literature
2.
go back to reference Gibb WR (1992) Neuropathology of Parkinson’s disease and related syndromes. Neurol Clin 10:361–376PubMed Gibb WR (1992) Neuropathology of Parkinson’s disease and related syndromes. Neurol Clin 10:361–376PubMed
3.
4.
go back to reference Schulz JB, Falkenburger BH (2004) Neuronal pathology in Parkinson’s disease. Cell Tissue Res 318:135–147PubMedCrossRef Schulz JB, Falkenburger BH (2004) Neuronal pathology in Parkinson’s disease. Cell Tissue Res 318:135–147PubMedCrossRef
5.
go back to reference Fietz MJ, Concordet JP, Barbosa R, Johnson R, Krauss S, McMahon AP, et al (1994) The hedgehog gene family in Drosophila and vertebrate development. Dev Suppl, 43–51 Fietz MJ, Concordet JP, Barbosa R, Johnson R, Krauss S, McMahon AP, et al (1994) The hedgehog gene family in Drosophila and vertebrate development. Dev Suppl, 43–51
6.
go back to reference Hammerschmidt M, Brook A, McMahon AP (1997) The world according to hedgehog. Trends Genet 13:14–21PubMedCrossRef Hammerschmidt M, Brook A, McMahon AP (1997) The world according to hedgehog. Trends Genet 13:14–21PubMedCrossRef
8.
9.
go back to reference Bumcrot DA, Takada R, McMahon AP (1995) Proteolytic processing yields two secreted forms of Sonic hedgehog. Mol Cell Biol 15:2294–2303PubMedCentralPubMed Bumcrot DA, Takada R, McMahon AP (1995) Proteolytic processing yields two secreted forms of Sonic hedgehog. Mol Cell Biol 15:2294–2303PubMedCentralPubMed
10.
go back to reference Beachy PA, Cooper MK, Young KE, von Kessler DP, Park WJ, Hall TM et al (1997) Multiple roles of cholesterol in hedgehog protein biogenesis and signaling. Cold Spring Harb Symp Quant Biol 62:191–204PubMedCrossRef Beachy PA, Cooper MK, Young KE, von Kessler DP, Park WJ, Hall TM et al (1997) Multiple roles of cholesterol in hedgehog protein biogenesis and signaling. Cold Spring Harb Symp Quant Biol 62:191–204PubMedCrossRef
11.
go back to reference Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP et al (1998) Identification of a palmitic acid-modified form of human Sonic hedgehog. Biol Chem 273:14037–14045CrossRef Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP et al (1998) Identification of a palmitic acid-modified form of human Sonic hedgehog. Biol Chem 273:14037–14045CrossRef
12.
go back to reference Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell TM, Rubenstein JL et al (1999) Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398:622–627PubMedCrossRef Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell TM, Rubenstein JL et al (1999) Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398:622–627PubMedCrossRef
13.
go back to reference Ericson J, Muhr J, Jessell TM, Edlund T (1995) Sonic hedgehog: a common signal for ventral patterning along the rostrocaudal axis of the neural tube. Int J Dev Biol 39:809–816PubMed Ericson J, Muhr J, Jessell TM, Edlund T (1995) Sonic hedgehog: a common signal for ventral patterning along the rostrocaudal axis of the neural tube. Int J Dev Biol 39:809–816PubMed
14.
go back to reference Gunhaga L, Jessell TM, Edlund T (2000) Sonic hedgehog signaling at gastrula stages specifies ventral telencephalic cells in the chick embryo. Development 127:3283–3293PubMed Gunhaga L, Jessell TM, Edlund T (2000) Sonic hedgehog signaling at gastrula stages specifies ventral telencephalic cells in the chick embryo. Development 127:3283–3293PubMed
15.
go back to reference Shimamura K, Rubenstein JL (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124:2709–2718PubMed Shimamura K, Rubenstein JL (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124:2709–2718PubMed
17.
go back to reference McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53:1–114PubMedCrossRef McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53:1–114PubMedCrossRef
18.
go back to reference Ruiz iAltaba A, Palma V, Dahmane N (2002) Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci 3:24–33CrossRef Ruiz iAltaba A, Palma V, Dahmane N (2002) Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci 3:24–33CrossRef
19.
go back to reference Prakash N, Wurst W (2006) Genetic networks controlling the development of midbrain dopaminergic neurons. J Physiol 572:403–410CrossRef Prakash N, Wurst W (2006) Genetic networks controlling the development of midbrain dopaminergic neurons. J Physiol 572:403–410CrossRef
20.
go back to reference Perez-Balaguer A, Puelles E, Wurst W, Martinez S (2009) Shh dependent and independent maintenance of basal midbrain. Mech Dev 126:301–313PubMedCrossRef Perez-Balaguer A, Puelles E, Wurst W, Martinez S (2009) Shh dependent and independent maintenance of basal midbrain. Mech Dev 126:301–313PubMedCrossRef
21.
go back to reference Roussa E, Krieglstein K (2004) Induction and specification of midbrain dopaminergic cells: focus on SHH, FGF8, and TGF-B. Cell Tissue Res 318:23–33PubMedCrossRef Roussa E, Krieglstein K (2004) Induction and specification of midbrain dopaminergic cells: focus on SHH, FGF8, and TGF-B. Cell Tissue Res 318:23–33PubMedCrossRef
22.
go back to reference Martí E (1995) Requirement of 19 K of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375:322–325PubMedCrossRef Martí E (1995) Requirement of 19 K of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375:322–325PubMedCrossRef
23.
go back to reference Tanabe Y, Roelink H, Jessell TM (1995) Induction of motor neurons by Sonic hedgehog is independent of floor plate. Curr Biol 5:651–658PubMedCrossRef Tanabe Y, Roelink H, Jessell TM (1995) Induction of motor neurons by Sonic hedgehog is independent of floor plate. Curr Biol 5:651–658PubMedCrossRef
24.
go back to reference Wang MZ, Jin P, Bumcrot DA, Marigo V, McMahon AP, Wang EA et al (1995) Induction of dopaminergic neuron phenotype in the midbrain by Sonic hedgehog protein. Nat Med 1:1184–1188PubMedCrossRef Wang MZ, Jin P, Bumcrot DA, Marigo V, McMahon AP, Wang EA et al (1995) Induction of dopaminergic neuron phenotype in the midbrain by Sonic hedgehog protein. Nat Med 1:1184–1188PubMedCrossRef
25.
go back to reference Kim TE, Lee HS, Lee YB, Hong SH, Lee YS, Ichinose H et al (2003) Sonic hedgehog and FGF8 collaborate to induce dopaminergic phenotypes in the Nurr1-overexpressing neural stem cell. Biochem Biophys Res Commun 305:1040–1048PubMedCrossRef Kim TE, Lee HS, Lee YB, Hong SH, Lee YS, Ichinose H et al (2003) Sonic hedgehog and FGF8 collaborate to induce dopaminergic phenotypes in the Nurr1-overexpressing neural stem cell. Biochem Biophys Res Commun 305:1040–1048PubMedCrossRef
26.
go back to reference Hynes M, Porter JA, Chiang C, Chang D, Tessier-Lavigne M, Beachy PA et al (1995) Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron 15:35–44PubMedCrossRef Hynes M, Porter JA, Chiang C, Chang D, Tessier-Lavigne M, Beachy PA et al (1995) Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron 15:35–44PubMedCrossRef
27.
go back to reference Salinas PC (2003) The morphogen sonic hedgehog collaborates with netrin-1 to guide axons in the spinal cord. Trends Neurosci 26:641–643PubMedCrossRef Salinas PC (2003) The morphogen sonic hedgehog collaborates with netrin-1 to guide axons in the spinal cord. Trends Neurosci 26:641–643PubMedCrossRef
28.
go back to reference Charron F, Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003) The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113:11–23PubMedCrossRef Charron F, Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003) The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113:11–23PubMedCrossRef
29.
go back to reference Traiffort E, Charytoniuk D, Watroba L, Faure H, Sales N, Ruat M (1999) Discrete localizations of hedgehog signalling components in the developing and adult rat nervous system. Eur J Neurosci 11:3199–3214PubMedCrossRef Traiffort E, Charytoniuk D, Watroba L, Faure H, Sales N, Ruat M (1999) Discrete localizations of hedgehog signalling components in the developing and adult rat nervous system. Eur J Neurosci 11:3199–3214PubMedCrossRef
30.
go back to reference Kutner RH, Zhang XY, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4:495–505PubMedCrossRef Kutner RH, Zhang XY, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4:495–505PubMedCrossRef
31.
go back to reference Choudhury ME, Sugimoto K, Kubo M, Nagai M, Nomoto M, Takahashi H et al (2011) A cytokine mixture of GM-CSF and IL-3 that induces a neuroprotective phenotype of microglia leading to amelioration of (6-OHDA)-induced parkinsonism of rats. Brain Behav 1:26–43PubMedCentralPubMedCrossRef Choudhury ME, Sugimoto K, Kubo M, Nagai M, Nomoto M, Takahashi H et al (2011) A cytokine mixture of GM-CSF and IL-3 that induces a neuroprotective phenotype of microglia leading to amelioration of (6-OHDA)-induced parkinsonism of rats. Brain Behav 1:26–43PubMedCentralPubMedCrossRef
32.
go back to reference Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, Tian Q et al (2007) Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci USA 104:3591–3596PubMedCentralPubMedCrossRef Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, Tian Q et al (2007) Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci USA 104:3591–3596PubMedCentralPubMedCrossRef
33.
go back to reference Grealish S, Jönsson ME, Li M, Kirik D, Björklund A, Thompson LH (2010) The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson’s disease. Brain 133:482–495PubMedCentralPubMedCrossRef Grealish S, Jönsson ME, Li M, Kirik D, Björklund A, Thompson LH (2010) The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson’s disease. Brain 133:482–495PubMedCentralPubMedCrossRef
34.
go back to reference Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087PubMedCrossRef Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087PubMedCrossRef
35.
go back to reference Yam PT, Langlois SD, Morin S, Charron F (2009) Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway. Neuron 62:349–362PubMedCrossRef Yam PT, Langlois SD, Morin S, Charron F (2009) Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway. Neuron 62:349–362PubMedCrossRef
36.
go back to reference Hashimoto M, Ishii K, Nakamura Y, Watabe K, Kohsaka S, Akazawa C (2008) Neuroprotective effect of sonic hedgehog up-regulated in Schwann cells following sciatic nerve injury. J Neurochem 107:918–927PubMed Hashimoto M, Ishii K, Nakamura Y, Watabe K, Kohsaka S, Akazawa C (2008) Neuroprotective effect of sonic hedgehog up-regulated in Schwann cells following sciatic nerve injury. J Neurochem 107:918–927PubMed
37.
go back to reference Wu CL, Chen SD, Hwang CS, Yang DI (2009) Sonic hedgehog mediates BDNF-induced neuroprotection against mitochondrial inhibitor 3-nitropropionic acid. Biochem Biophys Res Commun 385:112–117PubMedCrossRef Wu CL, Chen SD, Hwang CS, Yang DI (2009) Sonic hedgehog mediates BDNF-induced neuroprotection against mitochondrial inhibitor 3-nitropropionic acid. Biochem Biophys Res Commun 385:112–117PubMedCrossRef
38.
go back to reference Tsuboi K, Shults CW (2002) Intrastriatal Injection of sonic hedgehog reduces behavioral impairment in a rat model of parkinson’s disease. Exp Neurol 173:95–104PubMedCrossRef Tsuboi K, Shults CW (2002) Intrastriatal Injection of sonic hedgehog reduces behavioral impairment in a rat model of parkinson’s disease. Exp Neurol 173:95–104PubMedCrossRef
39.
go back to reference Torres EM, Monville C, Lowenstein PR, Castro MG, Dunnett SB (2005) Delivery of sonic hedgehog or glial derived neurotrophic factor to dopamine-rich grafts in a rat model of Parkinson’s disease using adenoviral vectors increased yield of dopamine cells is dependent on embryonic donor age. Brain Res Bull 68:31–41PubMedCentralPubMedCrossRef Torres EM, Monville C, Lowenstein PR, Castro MG, Dunnett SB (2005) Delivery of sonic hedgehog or glial derived neurotrophic factor to dopamine-rich grafts in a rat model of Parkinson’s disease using adenoviral vectors increased yield of dopamine cells is dependent on embryonic donor age. Brain Res Bull 68:31–41PubMedCentralPubMedCrossRef
40.
go back to reference Suwelack D, Hurtado-Lorenzo A, Millan E, Gonzalez-Nicolini V, Wawrowsky K, Lowenstein PR et al (2004) Neuronal expression of the transcription factor Gli1 using the Talpha1 alpha-tubulin promoter is neuroprotective in an experimental model of Parkinson’s disease. Gene Ther 11:1742–1752PubMedCentralPubMedCrossRef Suwelack D, Hurtado-Lorenzo A, Millan E, Gonzalez-Nicolini V, Wawrowsky K, Lowenstein PR et al (2004) Neuronal expression of the transcription factor Gli1 using the Talpha1 alpha-tubulin promoter is neuroprotective in an experimental model of Parkinson’s disease. Gene Ther 11:1742–1752PubMedCentralPubMedCrossRef
41.
go back to reference Hurtado-Lorenzo A, Millan E, Gonzalez-Nicolini V, Suwelack D, Castro MG, Lowenstein PR (2004) Differentiation and transcription factor gene therapy in experimental Parkinson’s disease:sonic hedgehog and gli-1, but not Nurr-1, protect nigrostriatal cell bodies from 6-OHDA-induced neurodegeneration1. Mol Ther 10:507–524PubMedCentralPubMedCrossRef Hurtado-Lorenzo A, Millan E, Gonzalez-Nicolini V, Suwelack D, Castro MG, Lowenstein PR (2004) Differentiation and transcription factor gene therapy in experimental Parkinson’s disease:sonic hedgehog and gli-1, but not Nurr-1, protect nigrostriatal cell bodies from 6-OHDA-induced neurodegeneration1. Mol Ther 10:507–524PubMedCentralPubMedCrossRef
42.
go back to reference Martí E, Bovolenta P (2002) Sonic hedgehog in CNS development: one signal, multiple outputs. Trends Neurosci 25:89–96PubMedCrossRef Martí E, Bovolenta P (2002) Sonic hedgehog in CNS development: one signal, multiple outputs. Trends Neurosci 25:89–96PubMedCrossRef
43.
go back to reference Emborg ME, Deglon N, Leventhal L, Aebischer P, Kordower JH (2001) Viral vector-mediated gene therapy for Parkinson’s disease. Clin Neurosci Res 1:496–506CrossRef Emborg ME, Deglon N, Leventhal L, Aebischer P, Kordower JH (2001) Viral vector-mediated gene therapy for Parkinson’s disease. Clin Neurosci Res 1:496–506CrossRef
44.
go back to reference Bensadoun JC, Widmer HR, Zurn AD, Aebischer P (2001) Polymer encapsulated cells as a tool for drug delivery and neural transplantation in Parkinson’s disease. In: Krauss JK, Jankovic J (eds) Surgery for Parkinson’s disease and movement disorders. Lippincott Williams&Wilkins, Philadelphia, pp 245–251 Bensadoun JC, Widmer HR, Zurn AD, Aebischer P (2001) Polymer encapsulated cells as a tool for drug delivery and neural transplantation in Parkinson’s disease. In: Krauss JK, Jankovic J (eds) Surgery for Parkinson’s disease and movement disorders. Lippincott Williams&Wilkins, Philadelphia, pp 245–251
45.
go back to reference Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M et al (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson’s disease. Nat Med 9:589–595PubMedCrossRef Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M et al (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson’s disease. Nat Med 9:589–595PubMedCrossRef
46.
go back to reference Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12:1259–1268PubMedCrossRef Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12:1259–1268PubMedCrossRef
47.
go back to reference Sonntag KC, Pruszak J, Yoshizaki T, van Arensbergen J, Sanchez-Pernaute R, Isacson O (2007) Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 25:411–418PubMedCentralPubMedCrossRef Sonntag KC, Pruszak J, Yoshizaki T, van Arensbergen J, Sanchez-Pernaute R, Isacson O (2007) Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 25:411–418PubMedCentralPubMedCrossRef
48.
go back to reference Snyder BJ, Olanow CW (2005) Stem cell treatment for Parkinson’s disease: an update for 2005. Curr Opin Neurol 18:376–385PubMedCrossRef Snyder BJ, Olanow CW (2005) Stem cell treatment for Parkinson’s disease: an update for 2005. Curr Opin Neurol 18:376–385PubMedCrossRef
49.
go back to reference Bensadoun JC, Déglon N, Tseng JL, Ridet JL, Zurn AD, Aebischer P (2000) Lentiviral vectors as a gene delivery system in the mouse midbrain:cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp Neurol 164:15–24PubMedCrossRef Bensadoun JC, Déglon N, Tseng JL, Ridet JL, Zurn AD, Aebischer P (2000) Lentiviral vectors as a gene delivery system in the mouse midbrain:cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp Neurol 164:15–24PubMedCrossRef
50.
go back to reference Georgievska B, Kirik D, Björklund A (2004) Overexpression of glial cell line-derived neurotrophic factor using a lentiviral vector induces time-and dose-dependent downregulation of tyrosine hydroxylase in the intact nigrostriatal dopamine system. J Neurosci 24:6437–6445PubMedCrossRef Georgievska B, Kirik D, Björklund A (2004) Overexpression of glial cell line-derived neurotrophic factor using a lentiviral vector induces time-and dose-dependent downregulation of tyrosine hydroxylase in the intact nigrostriatal dopamine system. J Neurosci 24:6437–6445PubMedCrossRef
51.
go back to reference Rosenblad C, Grønborg M, Hansen C, Blom N, Meyer M, Johansen J et al (2000) In vivo protection of nigral dopamine neurons by lentiviral gene transfer of the novel GDNF-family member neublastin/artemin. Mol Cell Neurosci 15:199–214PubMedCrossRef Rosenblad C, Grønborg M, Hansen C, Blom N, Meyer M, Johansen J et al (2000) In vivo protection of nigral dopamine neurons by lentiviral gene transfer of the novel GDNF-family member neublastin/artemin. Mol Cell Neurosci 15:199–214PubMedCrossRef
52.
go back to reference Kirik D, Rosenblad C, Björklund A (2000) Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur J Neurosci 12:3871–3882PubMedCrossRef Kirik D, Rosenblad C, Björklund A (2000) Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur J Neurosci 12:3871–3882PubMedCrossRef
53.
go back to reference Kirik D, Rosenblad C, Bjorklund A, Mandel RJ (2000) Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 20:4686–4700PubMed Kirik D, Rosenblad C, Bjorklund A, Mandel RJ (2000) Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 20:4686–4700PubMed
54.
go back to reference Georgievska B, Kirik D, Rosenblad C, Lundberg C, Björklund A (2002) Neuroprotection in the rat Parkinson model by intrastriatal GDNF gene transfer using a lentiviral vector. Neuroreport 13:75–82PubMedCrossRef Georgievska B, Kirik D, Rosenblad C, Lundberg C, Björklund A (2002) Neuroprotection in the rat Parkinson model by intrastriatal GDNF gene transfer using a lentiviral vector. Neuroreport 13:75–82PubMedCrossRef
55.
go back to reference Björklund A, Kirik D, Rosenblad C, Georgievska B, Lundberg C, Mandel RJ (2000) Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 886:82–98PubMedCrossRef Björklund A, Kirik D, Rosenblad C, Georgievska B, Lundberg C, Mandel RJ (2000) Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 886:82–98PubMedCrossRef
56.
go back to reference Lo Bianco C, Déglon N, Pralong W, Aebischer P (2004) Lentiviral nigral delivery of GDNF does not prevent neurodegeneration in a genetic rat model of Parkinson’s disease. Neurobiol Dis 17:283–289PubMedCrossRef Lo Bianco C, Déglon N, Pralong W, Aebischer P (2004) Lentiviral nigral delivery of GDNF does not prevent neurodegeneration in a genetic rat model of Parkinson’s disease. Neurobiol Dis 17:283–289PubMedCrossRef
57.
go back to reference Diaz Jaime (1996) How drugs influence behavior. Prentice-Hall, Englewood Cliffs Diaz Jaime (1996) How drugs influence behavior. Prentice-Hall, Englewood Cliffs
58.
60.
go back to reference Anastasía A, Torre L, de Erausquin GA, Mascó DH (2009) Enriched environment protects the nigrostriatal dopaminergic system and induces astroglial reaction in the 6-OHDA rat model of Parkinson’s disease. J Neurochem 109:755–765PubMedCentralPubMedCrossRef Anastasía A, Torre L, de Erausquin GA, Mascó DH (2009) Enriched environment protects the nigrostriatal dopaminergic system and induces astroglial reaction in the 6-OHDA rat model of Parkinson’s disease. J Neurochem 109:755–765PubMedCentralPubMedCrossRef
61.
go back to reference Asanuma C (1992) Noradrenergic innervation of the thalamic reticular nucleus: a light and electron microscopic immunohistochemical study in rats. J Comp Neurol 319:299–311PubMedCrossRef Asanuma C (1992) Noradrenergic innervation of the thalamic reticular nucleus: a light and electron microscopic immunohistochemical study in rats. J Comp Neurol 319:299–311PubMedCrossRef
62.
go back to reference Cornwall J, Phillipson OT (1988) Quantitative analysis of axonal branching using the retrograde transport of fluorescent latex microspheres. J Neurosci Methods 24:1–9PubMedCrossRef Cornwall J, Phillipson OT (1988) Quantitative analysis of axonal branching using the retrograde transport of fluorescent latex microspheres. J Neurosci Methods 24:1–9PubMedCrossRef
63.
go back to reference Schmued LC (1994) Diagonal ventral forebrain continuum has overlapping telencephalic inputs and brainstem outputs which represent loci for limbic/autonomic integration. Brain Res 667:175–191PubMedCrossRef Schmued LC (1994) Diagonal ventral forebrain continuum has overlapping telencephalic inputs and brainstem outputs which represent loci for limbic/autonomic integration. Brain Res 667:175–191PubMedCrossRef
64.
go back to reference Schmued L, Kyriakidis K, Heimer L (1990) In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine Fluoro-Ruby within the CNS. Brain Res 526:127–134PubMedCrossRef Schmued L, Kyriakidis K, Heimer L (1990) In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine Fluoro-Ruby within the CNS. Brain Res 526:127–134PubMedCrossRef
65.
go back to reference Schofield BR (2010) Projections from auditory cortex to midbrain cholinergic neurons that project to the inferior colliculus. Neuroscience 166:231–240PubMedCentralPubMedCrossRef Schofield BR (2010) Projections from auditory cortex to midbrain cholinergic neurons that project to the inferior colliculus. Neuroscience 166:231–240PubMedCentralPubMedCrossRef
66.
go back to reference Kang N, Baum MJ, Cherry JA (2009) A direct main olfactory bulb projection to the ‘vomeronasal’ amygdala in female mice selectively responds to volatile pheromones from males. Eur J Neurosci 29:624–634PubMedCentralPubMedCrossRef Kang N, Baum MJ, Cherry JA (2009) A direct main olfactory bulb projection to the ‘vomeronasal’ amygdala in female mice selectively responds to volatile pheromones from males. Eur J Neurosci 29:624–634PubMedCentralPubMedCrossRef
67.
go back to reference Bowyer JF, Schmued LC (2006) Fluoro-Ruby labeling prior to an amphetamine neurotoxic insult shows a definitive massive loss of dopaminergic terminals and axons in the caudate-putamen. Brain Res 1075:236–239PubMedCrossRef Bowyer JF, Schmued LC (2006) Fluoro-Ruby labeling prior to an amphetamine neurotoxic insult shows a definitive massive loss of dopaminergic terminals and axons in the caudate-putamen. Brain Res 1075:236–239PubMedCrossRef
68.
go back to reference O’Rourke NA, Fraser SE (1986) Dynamic aspects of retino-tectalmap formation revealed by a vital-dyefiber-tracing technique. Dev Biol 114:265–276PubMedCrossRef O’Rourke NA, Fraser SE (1986) Dynamic aspects of retino-tectalmap formation revealed by a vital-dyefiber-tracing technique. Dev Biol 114:265–276PubMedCrossRef
69.
go back to reference Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455PubMedCrossRef Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455PubMedCrossRef
70.
go back to reference Rosenblad C, Kirik D, Björklund A (2000) Sequential administration of GDNF into the substantia nigra and striatum promotes dopamine neuron survival and axonal sprouting but not striatal reinnervation or functional recovery in the partial 6-OHDA lesion model. Exp Neurol 161:503–516PubMedCrossRef Rosenblad C, Kirik D, Björklund A (2000) Sequential administration of GDNF into the substantia nigra and striatum promotes dopamine neuron survival and axonal sprouting but not striatal reinnervation or functional recovery in the partial 6-OHDA lesion model. Exp Neurol 161:503–516PubMedCrossRef
71.
go back to reference Winkler C, Sauer H, Lee CS, Björklund A (1996) Short-term GDNF treatment provides long-term rescue of lesioned nigral dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 16:7206–7215PubMed Winkler C, Sauer H, Lee CS, Björklund A (1996) Short-term GDNF treatment provides long-term rescue of lesioned nigral dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 16:7206–7215PubMed
72.
go back to reference Lapchak PA, Miller PJ, Jiao S (1997) Glial cell line derived neurotrophic factor induces the dopaminergic and cholinergic phenotype and increases locomotor activity in aged Fischer 344 rats. Neuroscience 77:745–752PubMedCrossRef Lapchak PA, Miller PJ, Jiao S (1997) Glial cell line derived neurotrophic factor induces the dopaminergic and cholinergic phenotype and increases locomotor activity in aged Fischer 344 rats. Neuroscience 77:745–752PubMedCrossRef
73.
go back to reference Jacque CM, Vinner C, Kujas M, Raoul M, Racadot J, Baumann NA (1978) Determination of glial fibrillary acidic protein (GFAP) in human brain tumors. J Neurol Sci 35:147–155PubMedCrossRef Jacque CM, Vinner C, Kujas M, Raoul M, Racadot J, Baumann NA (1978) Determination of glial fibrillary acidic protein (GFAP) in human brain tumors. J Neurol Sci 35:147–155PubMedCrossRef
74.
go back to reference L’ Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B (2010) Glia as a turning point in the therapeutic strategy of Parkinson’s disease. CNS Neurol Disord Drug Targets 9:349–372CrossRef L’ Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B (2010) Glia as a turning point in the therapeutic strategy of Parkinson’s disease. CNS Neurol Disord Drug Targets 9:349–372CrossRef
75.
go back to reference Khoo ML, Tao H, Meedeniya AC, Mackay-Sim A, Ma DD (2011) Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents. PLoS One 6:e19025PubMedCentralPubMedCrossRef Khoo ML, Tao H, Meedeniya AC, Mackay-Sim A, Ma DD (2011) Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents. PLoS One 6:e19025PubMedCentralPubMedCrossRef
Metadata
Title
Lentivirus-mediated delivery of sonic hedgehog into the striatum stimulates neuroregeneration in a rat model of Parkinson disease
Authors
Yi Zhang
Weiren Dong
Suiqun Guo
Shu Zhao
Suifen He
Lihua Zhang
Yinjuan Tang
Haihong Wang
Publication date
01-12-2014
Publisher
Springer Milan
Published in
Neurological Sciences / Issue 12/2014
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-014-1866-6

Other articles of this Issue 12/2014

Neurological Sciences 12/2014 Go to the issue