Skip to main content
Top
Published in: Journal of Nuclear Cardiology 5/2016

01-10-2016 | Original Article

Left ventricular metabolism, function, and sympathetic innervation in men and women with type 1 diabetes

Authors: Claire S. Duvernoy, MD, David M. Raffel, PhD, Scott D. Swanson, PhD, Mamta Jaiswal, MD, Gisela Mueller, MD, El-Sayed Ibrahim, PhD, Subramaniam Pennathur, MD, Cynthia Plunkett, RN, Jadranka Stojanovska, MD, Morton B. Brown, PhD, Rodica Pop-Busui, MD, PhD

Published in: Journal of Nuclear Cardiology | Issue 5/2016

Login to get access

Abstract

Background

In type I diabetes (T1DM), alterations in LV function may occur due to changes in innervation, metabolism, and efficiency.

Objectives

We evaluated the association between sympathetic nerve function, oxidative metabolism, resting blood flow, LV efficiency and function in healthy diabetics, and assessed gender differences.

Methods

Cross-sectional study of 45 subjects with T1DM, 60% females, age 34 ± 13 years, and 10 age-matched controls. Positron emission tomography (PET) imaging with [11C]acetate and [11C]meta-hydroxyephedrine was performed, in addition to cardiac magnetic resonance imaging.

Results

There were no significant differences in LV function, innervation, or oxidative metabolism between T1DM and controls. Cardiac oxidative metabolism was positively associated with higher levels of sympathetic activation, particularly in women. Diabetic women had significantly lower efficiency compared with diabetic men. Resting flow was significantly higher in diabetic women compared with diabetic men, and tended to be higher in female controls as well.

Conclusions

Measures of myocardial function, metabolism, blood flow, and sympathetic activation were preserved in young, otherwise healthy, T1DM patients. However, T1DM women presented with greater myocardial oxidative metabolism requirements than men. Ongoing studies are evaluating changes over time.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pop-Busui R, Cleary PA, Braffett BH, et al. Association between cardiovascular autonomic neuropathy and left ventricular dysfunction: DCCT/EDIC study (Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications). J Am Coll Cardiol. 2013;61:447–54.CrossRefPubMed Pop-Busui R, Cleary PA, Braffett BH, et al. Association between cardiovascular autonomic neuropathy and left ventricular dysfunction: DCCT/EDIC study (Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications). J Am Coll Cardiol. 2013;61:447–54.CrossRefPubMed
2.
go back to reference Pop-Busui R, Kirkwood I, Schmid H, et al. Sympathetic dysfunction in type 1 diabetes: Association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol. 2004;44:2368–74.CrossRefPubMed Pop-Busui R, Kirkwood I, Schmid H, et al. Sympathetic dysfunction in type 1 diabetes: Association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol. 2004;44:2368–74.CrossRefPubMed
3.
go back to reference Sacre JW, Franjic B, Jellis CL, et al. Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. JACC Cardiovasc Imaging. 2010;3:1207–15.CrossRefPubMed Sacre JW, Franjic B, Jellis CL, et al. Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. JACC Cardiovasc Imaging. 2010;3:1207–15.CrossRefPubMed
4.
go back to reference Kahn JK, Zola B, Juni JE, et al. Radionuclide assessment of left ventricular diastolic filling in diabetes mellitus with and without cardiac autonomic neuropathy. J Am Coll Cardiol. 1986;7:1303–9.CrossRefPubMed Kahn JK, Zola B, Juni JE, et al. Radionuclide assessment of left ventricular diastolic filling in diabetes mellitus with and without cardiac autonomic neuropathy. J Am Coll Cardiol. 1986;7:1303–9.CrossRefPubMed
5.
go back to reference Vered A, Battler A, Segal P, et al. Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). Am J Cardiol. 1984;54:633–7.CrossRefPubMed Vered A, Battler A, Segal P, et al. Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). Am J Cardiol. 1984;54:633–7.CrossRefPubMed
6.
go back to reference Zarich SW, Arbuckle BE, Cohen LR, et al. Diastolic abnormalities in young asymptomatic diabetic patients assessed by pulsed Doppler echocardiography. J Am Coll Cardiol. 1988;12:114–20.CrossRefPubMed Zarich SW, Arbuckle BE, Cohen LR, et al. Diastolic abnormalities in young asymptomatic diabetic patients assessed by pulsed Doppler echocardiography. J Am Coll Cardiol. 1988;12:114–20.CrossRefPubMed
7.
go back to reference Drake-Holland AJ, Van der Vusse GJ, Roemen TH, et al. Chronic catecholamine depletion switches myocardium from carbohydrate to lipid utilisation. Cardiovasc Drugs Ther. 2001;15:111–7.CrossRefPubMed Drake-Holland AJ, Van der Vusse GJ, Roemen TH, et al. Chronic catecholamine depletion switches myocardium from carbohydrate to lipid utilisation. Cardiovasc Drugs Ther. 2001;15:111–7.CrossRefPubMed
8.
go back to reference Fang ZY, Yuda S, Anderson V, et al. Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol. 2003;41:611–7.CrossRefPubMed Fang ZY, Yuda S, Anderson V, et al. Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol. 2003;41:611–7.CrossRefPubMed
10.
go back to reference Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res. 2000;87:1123–32.CrossRefPubMed Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res. 2000;87:1123–32.CrossRefPubMed
11.
go back to reference Wolpers HG, Buck A, Nguyen N, et al. An approach to ventricular efficiency by use of carbon 11-labeled acetate and positron emission tomography. J Nucl Cardiol. 1994;1:262–9.CrossRefPubMed Wolpers HG, Buck A, Nguyen N, et al. An approach to ventricular efficiency by use of carbon 11-labeled acetate and positron emission tomography. J Nucl Cardiol. 1994;1:262–9.CrossRefPubMed
12.
go back to reference Sciacca RR, Akinboboye O, Ling Chou R, et al. Measurement of myocardial blood flow with PET using 1-11C-acetate. J Nucl Med. 2001;42:63–70.PubMed Sciacca RR, Akinboboye O, Ling Chou R, et al. Measurement of myocardial blood flow with PET using 1-11C-acetate. J Nucl Med. 2001;42:63–70.PubMed
13.
go back to reference Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation. 1999;100:813–9.CrossRefPubMed Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation. 1999;100:813–9.CrossRefPubMed
14.
go back to reference Smith-Palmer J, Brändle M, Trevisan R, et al. Assessment of the association between glycemic variability and diabetes-related complications in type 1 and type 2 diabetes. Diabetes Res Clin Pract. 2014;105:273–84.CrossRefPubMed Smith-Palmer J, Brändle M, Trevisan R, et al. Assessment of the association between glycemic variability and diabetes-related complications in type 1 and type 2 diabetes. Diabetes Res Clin Pract. 2014;105:273–84.CrossRefPubMed
15.
go back to reference Huxley RR, Peters SAE, Mishra GD, et al. Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3:198–206.CrossRefPubMed Huxley RR, Peters SAE, Mishra GD, et al. Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3:198–206.CrossRefPubMed
16.
go back to reference Jaiswal M, McKeon K, Comment N, et al. Association between impaired cardiovascular autonomic function and hypoglycemia in patients with type 1 diabetes. Diabetes Care. 2014;37:2616–21.CrossRefPubMedPubMedCentral Jaiswal M, McKeon K, Comment N, et al. Association between impaired cardiovascular autonomic function and hypoglycemia in patients with type 1 diabetes. Diabetes Care. 2014;37:2616–21.CrossRefPubMedPubMedCentral
17.
go back to reference Pop-Busui R, Low PA, Waberski BH, et al. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation. 2009;119:2886–93.CrossRefPubMedPubMedCentral Pop-Busui R, Low PA, Waberski BH, et al. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation. 2009;119:2886–93.CrossRefPubMedPubMedCentral
18.
go back to reference Spallone V, Ziegler D, Freeman R, et al. Cardiovascular autonomic neuropathy in diabetes: Clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27(7):639–53.CrossRefPubMed Spallone V, Ziegler D, Freeman R, et al. Cardiovascular autonomic neuropathy in diabetes: Clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27(7):639–53.CrossRefPubMed
19.
go back to reference Stevens MJ, Raffel DM, Allman KC, et al. Cardiac sympathetic dysinnervation in diabetes: Implications for enhanced cardiovascular risk. Circulation. 1998;98:961–8.CrossRefPubMed Stevens MJ, Raffel DM, Allman KC, et al. Cardiac sympathetic dysinnervation in diabetes: Implications for enhanced cardiovascular risk. Circulation. 1998;98:961–8.CrossRefPubMed
20.
go back to reference van den Hoff J, Burchert W, Borner AR, et al. [1-(11)C]Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med. 2001;42:1174–82.PubMed van den Hoff J, Burchert W, Borner AR, et al. [1-(11)C]Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med. 2001;42:1174–82.PubMed
21.
go back to reference Hutchins GD, Schwaiger M, Rosenspire KC, et al. Non-invasive quantification of regional myocardial blood flow in the human heart using [13N]ammonia and dynamic positron emission tomography imaging. J Am Coll Cardiol. 1990;15:1032–42.CrossRefPubMed Hutchins GD, Schwaiger M, Rosenspire KC, et al. Non-invasive quantification of regional myocardial blood flow in the human heart using [13N]ammonia and dynamic positron emission tomography imaging. J Am Coll Cardiol. 1990;15:1032–42.CrossRefPubMed
22.
go back to reference Buck A, Wolpers HG, Hutchins GD, et al. Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med. 1991;32:1950–7.PubMed Buck A, Wolpers HG, Hutchins GD, et al. Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med. 1991;32:1950–7.PubMed
23.
go back to reference Rawlings R, Yuan L, Shi H, et al. Dynamic Stress Factor (DySF): A significant predictor of severe hypoglycemic events in children with type 1 diabetes. J Diabetes Metab. 2012;3:177.PubMedPubMedCentral Rawlings R, Yuan L, Shi H, et al. Dynamic Stress Factor (DySF): A significant predictor of severe hypoglycemic events in children with type 1 diabetes. J Diabetes Metab. 2012;3:177.PubMedPubMedCentral
24.
go back to reference Spallone V, Bellavere F, Scionti L, et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovas Dis NMCD. 2011;21:69–78.CrossRef Spallone V, Bellavere F, Scionti L, et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovas Dis NMCD. 2011;21:69–78.CrossRef
25.
go back to reference Ziegler D, Laux G, Dannehl K, et al. Assessment of cardiovascular autonomic function: Age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. Diabet Med. 1992;9:166–75.CrossRefPubMed Ziegler D, Laux G, Dannehl K, et al. Assessment of cardiovascular autonomic function: Age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. Diabet Med. 1992;9:166–75.CrossRefPubMed
26.
go back to reference Givertz MM, Sawyer DB, Colucci WS. Antioxidants and myocardial contractility: Illuminating the “Dark Side” of beta-adrenergic receptor activation? Circulation. 2001;103:782–3.CrossRefPubMed Givertz MM, Sawyer DB, Colucci WS. Antioxidants and myocardial contractility: Illuminating the “Dark Side” of beta-adrenergic receptor activation? Circulation. 2001;103:782–3.CrossRefPubMed
27.
go back to reference Liedtke AJ, Renstrom B, Nellis SH, et al. Mechanical and metabolic functions in pig hearts after 4 days of chronic coronary stenosis. J Am Coll Cardiol. 1995;26:815–25.CrossRefPubMed Liedtke AJ, Renstrom B, Nellis SH, et al. Mechanical and metabolic functions in pig hearts after 4 days of chronic coronary stenosis. J Am Coll Cardiol. 1995;26:815–25.CrossRefPubMed
28.
go back to reference Schaffer SW, Tan BH, Wilson GL. Development of a cardiomyopathy in a model of noninsulin-dependent diabetes. Am J Physiol. 1985;248:H179–85.PubMed Schaffer SW, Tan BH, Wilson GL. Development of a cardiomyopathy in a model of noninsulin-dependent diabetes. Am J Physiol. 1985;248:H179–85.PubMed
29.
go back to reference Herrero P, Peterson LR, McGill JB, et al. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2006;47:598–604.CrossRefPubMed Herrero P, Peterson LR, McGill JB, et al. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2006;47:598–604.CrossRefPubMed
30.
go back to reference Peterson LR, Herrero P, McGill J, et al. Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 diabetes. Diabetes. 2008;57:32–40.CrossRefPubMed Peterson LR, Herrero P, McGill J, et al. Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 diabetes. Diabetes. 2008;57:32–40.CrossRefPubMed
31.
go back to reference Spyrou NM, Sharaf JM, Rajeswaran S. Developments in tomographic methods for biological trace element research. Biol Trace Elem Res. 1994;43–45:55–63.CrossRefPubMed Spyrou NM, Sharaf JM, Rajeswaran S. Developments in tomographic methods for biological trace element research. Biol Trace Elem Res. 1994;43–45:55–63.CrossRefPubMed
32.
33.
go back to reference Rijzewijk LJ, van der Meer RW, Lamb HJ, et al. Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: Studies With cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol. 2009;54:1524–32.CrossRefPubMed Rijzewijk LJ, van der Meer RW, Lamb HJ, et al. Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: Studies With cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol. 2009;54:1524–32.CrossRefPubMed
34.
go back to reference Rodrigues B, Cam MC, McNeill JH. Myocardial substrate metabolism: Implications for diabetic Cardiomyopathy. J Mol Cell Cardiol. 1995;27:169–79.CrossRefPubMed Rodrigues B, Cam MC, McNeill JH. Myocardial substrate metabolism: Implications for diabetic Cardiomyopathy. J Mol Cell Cardiol. 1995;27:169–79.CrossRefPubMed
36.
go back to reference Herrero P, McGill J, Lesniak DS, et al. PET detection of the impact of dobutamine on myocardial glucose metabolism in women with type 1 diabetes mellitus. J Nucl Cardiol. 2008;15:791–9.CrossRefPubMedPubMedCentral Herrero P, McGill J, Lesniak DS, et al. PET detection of the impact of dobutamine on myocardial glucose metabolism in women with type 1 diabetes mellitus. J Nucl Cardiol. 2008;15:791–9.CrossRefPubMedPubMedCentral
37.
go back to reference Peterson LR, Saeed IM, McGill JB, et al. Sex and type 2 diabetes: Obesity-independent effects on left ventricular substrate metabolism and relaxation in humans. Obesity (Silver Spring, Md). 2012;20:802–10.CrossRef Peterson LR, Saeed IM, McGill JB, et al. Sex and type 2 diabetes: Obesity-independent effects on left ventricular substrate metabolism and relaxation in humans. Obesity (Silver Spring, Md). 2012;20:802–10.CrossRef
38.
39.
go back to reference Stramba-Badiale M, Fox KM, Priori SG, et al. Cardiovascular diseases in women: A statement from the policy conference of the European Society of Cardiology. Eur Heart J. 2006;27:994–1005.CrossRefPubMed Stramba-Badiale M, Fox KM, Priori SG, et al. Cardiovascular diseases in women: A statement from the policy conference of the European Society of Cardiology. Eur Heart J. 2006;27:994–1005.CrossRefPubMed
40.
go back to reference Duvernoy CS, Meyer C, Seifert-Klauss V, et al. Gender differences in myocardial blood flow dynamics: Lipid profile and hemodynamic effects. J Am Coll Cardiol. 1999;33:463–70.CrossRefPubMed Duvernoy CS, Meyer C, Seifert-Klauss V, et al. Gender differences in myocardial blood flow dynamics: Lipid profile and hemodynamic effects. J Am Coll Cardiol. 1999;33:463–70.CrossRefPubMed
41.
go back to reference Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: Technical aspects and clinical applications. J Nucl Med. 2005;46:75–88.PubMed Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: Technical aspects and clinical applications. J Nucl Med. 2005;46:75–88.PubMed
42.
go back to reference Collins P, Rosano GM, Sarrel PM, et al. 17 beta-Estradiol attenuates acetylcholine-induced coronary arterial constriction in women but not men with coronary heart disease. Circulation. 1995;92:24–30.CrossRefPubMed Collins P, Rosano GM, Sarrel PM, et al. 17 beta-Estradiol attenuates acetylcholine-induced coronary arterial constriction in women but not men with coronary heart disease. Circulation. 1995;92:24–30.CrossRefPubMed
43.
go back to reference Han TS, Sattar N, Williams K, et al. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care. 2002;25:2016–21.CrossRefPubMed Han TS, Sattar N, Williams K, et al. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care. 2002;25:2016–21.CrossRefPubMed
Metadata
Title
Left ventricular metabolism, function, and sympathetic innervation in men and women with type 1 diabetes
Authors
Claire S. Duvernoy, MD
David M. Raffel, PhD
Scott D. Swanson, PhD
Mamta Jaiswal, MD
Gisela Mueller, MD
El-Sayed Ibrahim, PhD
Subramaniam Pennathur, MD
Cynthia Plunkett, RN
Jadranka Stojanovska, MD
Morton B. Brown, PhD
Rodica Pop-Busui, MD, PhD
Publication date
01-10-2016
Publisher
Springer US
Published in
Journal of Nuclear Cardiology / Issue 5/2016
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-016-0434-2

Other articles of this Issue 5/2016

Journal of Nuclear Cardiology 5/2016 Go to the issue