Skip to main content
Top
Published in: BMC Oral Health 1/2021

Open Access 01-12-2021 | Laser | Research

Efficacy of Er:YAG laser irradiation for decontamination and its effect on biocompatibility of different titanium surfaces

Authors: Peijun Huang, Xue Chen, Zhongren Chen, Min Chen, Jinzhi He, Lin Peng

Published in: BMC Oral Health | Issue 1/2021

Login to get access

Abstract

Background

Erbium yttrium–aluminum–garnet (Er:YAG) laser have been shown to be suitable for decontamination of titanium surfaces at a wide range of energy settings, however, high intensity of laser irradiation destroy titanium surface and low intensity cannot remove enough microbial biofilm. The aim of this study was to investigate the optimal energy setting of Er:YAG laser for decontamination of sandblasted/acid-etched (SLA) and hydroxyapatite (HA) titanium surfaces.

Material and methods

After supragingival biofilm construction in vivo, SLA and HA titanium discs were divided into three groups: blank control (BC, clean discs), experimental control (EC, contaminated discs) and experimental groups (EP, contaminated discs irradiated by Er:YAG laser at 40, 70, and 100 mJ/pulse). Scanning electron microscopy (SEM), live/dead bacterial fluorescent detection, and colony counting assay were used to detect the efficacy of laser decontamination. To investigate the effect of laser decontamination on titanium surface biocompatibility, MC3T3-E1 cell adhesion and proliferation activity were examined by SEM and CCK-8 assay.

Results

Er:YAG laser irradiation at 100 mJ/pulse removed 84.1% of bacteria from SLA titanium surface; laser irradiation at 70 and 100 mJ/pulse removed 76.4% and 77.85% of bacteria from HA titanium surface respectively. Laser irradiation improved MC3T3-E1 cell adhesion on both titanium surfaces. For SLA titanium discs, 100 mJ/pulse group displayed excellent cellular proliferation activity higher than that in BC group (P < 0.01). For HA titanium discs, 70 mJ/pulse group showed the highest activity comparable to BC group (P > 0.05).

Conclusions

With regards to efficient microbial biofilm decontamination and biocompatibility maintenance, Er:YAG laser at 100 mJ/pulse and 70 mJ/pulse are considered as the optimal energy settings for SLA titanium and HA titanium surface respectively. This study provides theoretical basis for the clinical application of Er:YAG laser in the treatment of peri-implantitis.
Literature
1.
go back to reference Schwarz F, Derks J, Monje A, Wang HL. Peri-implantitis. J Periodontol. 2018;89(Suppl 1):S267–90.CrossRef Schwarz F, Derks J, Monje A, Wang HL. Peri-implantitis. J Periodontol. 2018;89(Suppl 1):S267–90.CrossRef
2.
go back to reference Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol. 2015;42:158–71.CrossRef Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol. 2015;42:158–71.CrossRef
3.
go back to reference Lee CT, Huang YW, Zhu L, Weltman R. Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis. J Dent. 2017;62:1–12.CrossRef Lee CT, Huang YW, Zhu L, Weltman R. Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis. J Dent. 2017;62:1–12.CrossRef
4.
go back to reference Heitz-Mayfield LJ, Lang NP. Comparative biology of chronic and aggressive periodontitis versus peri-implantitis. Periodontol 2000. 2010;53(1):167–81.CrossRef Heitz-Mayfield LJ, Lang NP. Comparative biology of chronic and aggressive periodontitis versus peri-implantitis. Periodontol 2000. 2010;53(1):167–81.CrossRef
5.
go back to reference Schwarz F, John G, Mainusch S, Sahm N, Becker J. Combined surgical therapy of peri-implantitis evaluating two methods of surface debridement and decontamination. A 2-year clinical follow up report. J Clin Periodontol. 2012;39(8):789–97.CrossRef Schwarz F, John G, Mainusch S, Sahm N, Becker J. Combined surgical therapy of peri-implantitis evaluating two methods of surface debridement and decontamination. A 2-year clinical follow up report. J Clin Periodontol. 2012;39(8):789–97.CrossRef
6.
go back to reference Schwarz F, Aoki A, Sculean A, Becker J. The impact of laser application on periodontal and peri-implant wound healing. Periodontol 2000. 2009;51:79–108.CrossRef Schwarz F, Aoki A, Sculean A, Becker J. The impact of laser application on periodontal and peri-implant wound healing. Periodontol 2000. 2009;51:79–108.CrossRef
7.
go back to reference Lin Z, Strauss FJ, Lang NP, Sculean A, Salvi GE, Stähli A. Efficacy of laser monotherapy or non-surgical mechanical instrumentation in the management of untreated periodontitis patients. A systematic review and meta-analysis. Clin Oral Investig. 2021;25(2):375–91.CrossRef Lin Z, Strauss FJ, Lang NP, Sculean A, Salvi GE, Stähli A. Efficacy of laser monotherapy or non-surgical mechanical instrumentation in the management of untreated periodontitis patients. A systematic review and meta-analysis. Clin Oral Investig. 2021;25(2):375–91.CrossRef
8.
go back to reference Matsuyama T, Aoki A, Oda S, Yoneyama T, Ishikawa I. Effects of the Er:YAG laser irradiation on titanium implant materials and contaminated implant abutment surfaces. J Clin Laser Med Surg. 2003;21(1):7–17.CrossRef Matsuyama T, Aoki A, Oda S, Yoneyama T, Ishikawa I. Effects of the Er:YAG laser irradiation on titanium implant materials and contaminated implant abutment surfaces. J Clin Laser Med Surg. 2003;21(1):7–17.CrossRef
9.
go back to reference Kamel MS, Khosa A, Tawse-Smith A, Leichter J. The use of laser therapy for dental implant surface decontamination: a narrative review of in vitro studies. Lasers Med Sci. 2014;29(6):1977–85.CrossRef Kamel MS, Khosa A, Tawse-Smith A, Leichter J. The use of laser therapy for dental implant surface decontamination: a narrative review of in vitro studies. Lasers Med Sci. 2014;29(6):1977–85.CrossRef
10.
go back to reference Taniguchi Y, Aoki A, Mizutani K, Takeuchi Y, Ichinose S, Takasaki AA, Schwarz F, Izumi Y. Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants. Lasers Med Sci. 2013;28(4):1057–68.CrossRef Taniguchi Y, Aoki A, Mizutani K, Takeuchi Y, Ichinose S, Takasaki AA, Schwarz F, Izumi Y. Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants. Lasers Med Sci. 2013;28(4):1057–68.CrossRef
11.
go back to reference Kreisler M, Al Haj H, d’Hoedt B. Temperature changes at the implant–bone interface during simulated surface decontamination with an Er:YAG laser. Int J Prosthodont. 2002;15(6):582–7.PubMed Kreisler M, Al Haj H, d’Hoedt B. Temperature changes at the implant–bone interface during simulated surface decontamination with an Er:YAG laser. Int J Prosthodont. 2002;15(6):582–7.PubMed
12.
go back to reference Shin SI, Lee EK, Kim JH, et al. The effect of Er:YAG laser irradiation on hydroxyapatite-coated implants and fluoride-modified TiO2-blasted implant surfaces: a microstructural analysis. Lasers Med Sci. 2013;28(3):823–31.CrossRef Shin SI, Lee EK, Kim JH, et al. The effect of Er:YAG laser irradiation on hydroxyapatite-coated implants and fluoride-modified TiO2-blasted implant surfaces: a microstructural analysis. Lasers Med Sci. 2013;28(3):823–31.CrossRef
13.
go back to reference Persson LG, Araújo MG, Berglundh T, Gröndahl K, Lindhe J. Resolution of peri-implantitis following treatment. An experimental study in the dog. Clin Oral Implants Res. 1999;10(3):195–203.CrossRef Persson LG, Araújo MG, Berglundh T, Gröndahl K, Lindhe J. Resolution of peri-implantitis following treatment. An experimental study in the dog. Clin Oral Implants Res. 1999;10(3):195–203.CrossRef
14.
go back to reference Duarte PM, Reis AF, de Freitas PM, Ota-Tsuzuki C. Bacterial adhesion on smooth and rough titanium surfaces after treatment with different instruments. J Periodontol. 2009;80(11):1824–32.CrossRef Duarte PM, Reis AF, de Freitas PM, Ota-Tsuzuki C. Bacterial adhesion on smooth and rough titanium surfaces after treatment with different instruments. J Periodontol. 2009;80(11):1824–32.CrossRef
15.
go back to reference Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A. Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci. 2015;30(2):561–6.CrossRef Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A. Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci. 2015;30(2):561–6.CrossRef
16.
go back to reference Ayobian-Markazi N, Fourootan T, Zahmatkesh A. An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells to SLA titanium surfaces irradiated by erbium:yttrium–aluminum–garnet (Er:YAG) lasers. Lasers Med Sci. 2014;29(1):47–53.CrossRef Ayobian-Markazi N, Fourootan T, Zahmatkesh A. An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells to SLA titanium surfaces irradiated by erbium:yttrium–aluminum–garnet (Er:YAG) lasers. Lasers Med Sci. 2014;29(1):47–53.CrossRef
17.
go back to reference Eick S, Meier I, Spoerlé F, et al. In vitro-activity of Er:YAG laser in comparison with other treatment modalities on biofilm ablation from implant and tooth surfaces. PLoS ONE. 2017;12(1):e0171086.CrossRef Eick S, Meier I, Spoerlé F, et al. In vitro-activity of Er:YAG laser in comparison with other treatment modalities on biofilm ablation from implant and tooth surfaces. PLoS ONE. 2017;12(1):e0171086.CrossRef
18.
go back to reference Al-Hashedi AA, Laurenti M, Benhamou V, Tamimi F. Decontamination of titanium implants using physical methods. Clin Oral Implants Res. 2017;28(8):1013–21.CrossRef Al-Hashedi AA, Laurenti M, Benhamou V, Tamimi F. Decontamination of titanium implants using physical methods. Clin Oral Implants Res. 2017;28(8):1013–21.CrossRef
19.
go back to reference Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000. 2021;86(1):32–56.CrossRef Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000. 2021;86(1):32–56.CrossRef
20.
go back to reference Kuboniwa M, Lamont RJ. Subgingival biofilm formation. Periodontol 2000. 2010;52(1):38–52.CrossRef Kuboniwa M, Lamont RJ. Subgingival biofilm formation. Periodontol 2000. 2010;52(1):38–52.CrossRef
21.
go back to reference Schwarz F, Sculean A, Romanos G, et al. Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Investig. 2005;9(2):111–7.CrossRef Schwarz F, Sculean A, Romanos G, et al. Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Investig. 2005;9(2):111–7.CrossRef
22.
go back to reference Charalampakis G, Ramberg P, Dahlén G, Berglundh T, Abrahamsson I. Effect of cleansing of biofilm formed on titanium discs. Clin Oral Implants Res. 2015;26(8):931–6.CrossRef Charalampakis G, Ramberg P, Dahlén G, Berglundh T, Abrahamsson I. Effect of cleansing of biofilm formed on titanium discs. Clin Oral Implants Res. 2015;26(8):931–6.CrossRef
23.
go back to reference Otsuki M, Wada M, Yamaguchi M, Kawabata S, Maeda Y, Ikebe K. Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study. Int J Implant Dent. 2020;6(1):18.CrossRef Otsuki M, Wada M, Yamaguchi M, Kawabata S, Maeda Y, Ikebe K. Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study. Int J Implant Dent. 2020;6(1):18.CrossRef
24.
go back to reference Shin SI, Min HK, Park BH, et al. The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces: an in vitro study. Lasers Med Sci. 2011;26(6):767–76.CrossRef Shin SI, Min HK, Park BH, et al. The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces: an in vitro study. Lasers Med Sci. 2011;26(6):767–76.CrossRef
25.
go back to reference Hauser-Gerspach I, Mauth C, Waltimo T, Meyer J, Stübinger S. Effects of Er:YAG laser on bacteria associated with titanium surfaces and cellular response in vitro. Lasers Med Sci. 2014;29(4):1329–37.CrossRef Hauser-Gerspach I, Mauth C, Waltimo T, Meyer J, Stübinger S. Effects of Er:YAG laser on bacteria associated with titanium surfaces and cellular response in vitro. Lasers Med Sci. 2014;29(4):1329–37.CrossRef
26.
go back to reference Quaranta A, Maida C, Scrascia A, Campus G, Quaranta M. Er: Yag Laser application on titanium implant surfaces contaminated by Porphyromonas gingivalis: an histomorphometric evaluation. Minerva Stomatol. 2009;58(7–8):317–30.PubMed Quaranta A, Maida C, Scrascia A, Campus G, Quaranta M. Er: Yag Laser application on titanium implant surfaces contaminated by Porphyromonas gingivalis: an histomorphometric evaluation. Minerva Stomatol. 2009;58(7–8):317–30.PubMed
27.
go back to reference Chen CJ, Ding SJ, Chen CC. Effects of surface conditions of titanium dental implants on bacterial adhesion. Photomed Laser Surg. 2016;34(9):379–88.CrossRef Chen CJ, Ding SJ, Chen CC. Effects of surface conditions of titanium dental implants on bacterial adhesion. Photomed Laser Surg. 2016;34(9):379–88.CrossRef
28.
go back to reference Birang E, Birang R, Narimani T, Tolouei A, Fekrazad R. Investigation of the antibacterial effect of laser irradiation and chemical agent on human oral biofilms contaminated titanium discs. Photodiagn Photodyn Ther. 2019;25:259–64.CrossRef Birang E, Birang R, Narimani T, Tolouei A, Fekrazad R. Investigation of the antibacterial effect of laser irradiation and chemical agent on human oral biofilms contaminated titanium discs. Photodiagn Photodyn Ther. 2019;25:259–64.CrossRef
29.
go back to reference Larsen OI, Enersen M, Kristoffersen AK, et al. Antimicrobial effects of three different treatment modalities on dental implant surfaces. J Oral Implantol. 2017;43(6):429–36.CrossRef Larsen OI, Enersen M, Kristoffersen AK, et al. Antimicrobial effects of three different treatment modalities on dental implant surfaces. J Oral Implantol. 2017;43(6):429–36.CrossRef
30.
go back to reference Takagi T, Aoki A, Ichinose S, et al. Effective removal of calcified deposits on microstructured titanium fixture surfaces of dental implants with erbium lasers. J Periodontol. 2018;89(6):680–90.CrossRef Takagi T, Aoki A, Ichinose S, et al. Effective removal of calcified deposits on microstructured titanium fixture surfaces of dental implants with erbium lasers. J Periodontol. 2018;89(6):680–90.CrossRef
31.
go back to reference Stubinger S, Etter C, Miskiewicz M, et al. Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants. 2010;25(1):104–11.PubMed Stubinger S, Etter C, Miskiewicz M, et al. Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants. 2010;25(1):104–11.PubMed
32.
go back to reference Galli C, Macaluso GM, Elezi E, et al. The effects of Er:YAG laser treatment on titanium surface profile and osteoblastic cell activity: an in vitro study. J Periodontol. 2011;82(8):1169–77.CrossRef Galli C, Macaluso GM, Elezi E, et al. The effects of Er:YAG laser treatment on titanium surface profile and osteoblastic cell activity: an in vitro study. J Periodontol. 2011;82(8):1169–77.CrossRef
33.
go back to reference Coluzzi DJ. Fundamentals of dental lasers: science and instruments. Dent Clin North Am. 2004;48(4):751–70.CrossRef Coluzzi DJ. Fundamentals of dental lasers: science and instruments. Dent Clin North Am. 2004;48(4):751–70.CrossRef
34.
go back to reference Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials. 2004;25(18):4087–103.CrossRef Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials. 2004;25(18):4087–103.CrossRef
35.
go back to reference Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 2005;74(1):49–58.CrossRef Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 2005;74(1):49–58.CrossRef
36.
go back to reference Buser D, Broggini N, Wieland M, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004;83(7):529–33.CrossRef Buser D, Broggini N, Wieland M, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004;83(7):529–33.CrossRef
37.
go back to reference Lampin M, Warocquier-Clérout R, Legris C, Degrange M, Sigot-Luizard MF. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res. 1997;36(1):99–108.CrossRef Lampin M, Warocquier-Clérout R, Legris C, Degrange M, Sigot-Luizard MF. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res. 1997;36(1):99–108.CrossRef
38.
go back to reference Giannelli M, Bani D, Tani A, Materassi F, Chellini F, Sassoli C. Effects of an erbium:yttrium–aluminum–garnet laser and ultrasonic scaler on titanium dioxide-coated titanium surfaces contaminated with subgingival plaque: an in vitro study to assess post-treatment biocompatibility with osteogenic cells. J Periodontol. 2017;88(11):1211–20.CrossRef Giannelli M, Bani D, Tani A, Materassi F, Chellini F, Sassoli C. Effects of an erbium:yttrium–aluminum–garnet laser and ultrasonic scaler on titanium dioxide-coated titanium surfaces contaminated with subgingival plaque: an in vitro study to assess post-treatment biocompatibility with osteogenic cells. J Periodontol. 2017;88(11):1211–20.CrossRef
Metadata
Title
Efficacy of Er:YAG laser irradiation for decontamination and its effect on biocompatibility of different titanium surfaces
Authors
Peijun Huang
Xue Chen
Zhongren Chen
Min Chen
Jinzhi He
Lin Peng
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Laser
Published in
BMC Oral Health / Issue 1/2021
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-021-02006-z

Other articles of this Issue 1/2021

BMC Oral Health 1/2021 Go to the issue