Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Laser | Research

Effect of an low-energy Nd: YAG laser on periodontal ligament stem cell homing through the SDF-1/CXCR4 signaling pathway

Authors: Nan Wu, Jianing Song, Xin Liu, Xiangtao Ma, Xiaoman Guo, Taohong Liu, Mingxuan Wu

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

The key to the success of endogenous regeneration is to improve the homing rate of stem cells, and low-energy laser is an effective auxiliary means to promote cell migration and proliferation. The purpose of this study was to observe whether low-energy neodymium (Nd: YAG) laser with appropriate parameters can affect the proliferation and migration of periodontal ligament stem cells (PDLSCs) through SDF-1/CXCR4 pathway.

Methods

h PDLSCs were cultured and identified. CCK8 assay was used to detect the proliferation of h PDLSCs after different power (0, 0.25, 0.5, 1, and 1.5 W) Nd: YAG laser (MSP, 10 Hz, 30 s, 300 μ m) irradiation at 2th, 3rd,5th, and 7th days, and the optimal laser irradiation parameters were selected for subsequent experiments. Then, the cells were categorized into five groups: control group (C), SDF-1 group (S), AMD3100 group (A), Nd: YAG laser irradiation group (N), and Nd: YAG laser irradiation + AMD3100 group (N + A). the migration of h PDLSCs was observed using Transwell, and the SDF-1 expression was evaluated using ELISA andRT-PCR. The SPSS Statistics 21.0 software was used for statistical analysis.

Results

The fibroblasts cultured were identified as h PDLSCs. Compared with the C, when the power was 1 W, the proliferation rate of h PDLSCs was accelerated (P < 0.05). When the power was 1.5 W, the proliferation rate decreased (P < 0.05). When the power was 0.25 and 0.5 W, no statistically significant difference in the proliferation rate was observed (P > 0.05). The number of cell perforations values as follows: C (956.5 ± 51.74), A (981.5 ± 21.15), S (1253 ± 87.21), N (1336 ± 48.54), and N + A (1044 ± 22.13), that increased significantly in group N (P < 0.05), but decreased in group N + A (P < 0.05). The level of SDF-1 and the expression level of SDF-1 mRNA in groups N and N + A was higher than that in group C (P < 0.05) but lower than that in group A (P < 0.05).

Conclusions

Nd: YAG laser irradiation with appropriate parameters provides a new method for endogenous regeneration of periodontal tissue. SDF-1/CXCR4 signaling pathway may be the mechanism of LLLT promoting periodontal regeneration.
Literature
1.
go back to reference Aichelmann Reidy ME, Reynolds MA. Predictability of clinical outcomes following regenerative therapy in intrabony defects[J]. J Periodontol (1970). 2008;79(3):387–93.CrossRef Aichelmann Reidy ME, Reynolds MA. Predictability of clinical outcomes following regenerative therapy in intrabony defects[J]. J Periodontol (1970). 2008;79(3):387–93.CrossRef
2.
go back to reference Chen F, Gao L, Tian B, et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial[J]. Stem Cell Res Ther. 2016;7:1–1. Chen F, Gao L, Tian B, et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial[J]. Stem Cell Res Ther. 2016;7:1–1.
4.
go back to reference Kern SEHSJ. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue[J]. Stem Cells. 2010;24(5):1294–301.CrossRef Kern SEHSJ. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue[J]. Stem Cells. 2010;24(5):1294–301.CrossRef
5.
go back to reference Yin Y, Li X, He XT, et al. Leveraging stem cell homing for therapeutic regeneration[J]. J Dent Res. 2017;96(6):601–9.PubMedCrossRef Yin Y, Li X, He XT, et al. Leveraging stem cell homing for therapeutic regeneration[J]. J Dent Res. 2017;96(6):601–9.PubMedCrossRef
6.
go back to reference 沈梦杰, 杨琨, 刘琪. 不同来源干细胞在口腔骨再生中的应用[J]. 中国组织工程研究, 2019. 沈梦杰, 杨琨, 刘琪. 不同来源干细胞在口腔骨再生中的应用[J]. 中国组织工程研究, 2019.
7.
go back to reference Baek WY B I Y I. The effect of light-emitting diode (590/830 nm)-based low-level laser therapy on posttraumatic edema of facial bone fracture patients[J]. J Craniomaxillofac Surg, 2017,45(11):1875–1877. Baek WY B I Y I. The effect of light-emitting diode (590/830 nm)-based low-level laser therapy on posttraumatic edema of facial bone fracture patients[J]. J Craniomaxillofac Surg, 2017,45(11):1875–1877.
8.
go back to reference Khorsandi K, Hosseinzadeh R, Abrahamse H, et al. Biological responses of stem cells to photobiomodulation therapy[J]. Curr Stem Cell Res Ther. 2020;15(5):400–13.PubMedCrossRef Khorsandi K, Hosseinzadeh R, Abrahamse H, et al. Biological responses of stem cells to photobiomodulation therapy[J]. Curr Stem Cell Res Ther. 2020;15(5):400–13.PubMedCrossRef
9.
go back to reference Zheng X, He X, Zhang L. Bone marrow-derived CXCR4-overexpressing MSCs display increased homing to intestine and ameliorate colitis-associated tumorigenesis in mice[J]. Gastroenterol Rep, 2018. Zheng X, He X, Zhang L. Bone marrow-derived CXCR4-overexpressing MSCs display increased homing to intestine and ameliorate colitis-associated tumorigenesis in mice[J]. Gastroenterol Rep, 2018.
10.
go back to reference Diomede F, Gugliandolo A, Cardelli P, et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair[J]. Stem Cell Res. Ther, 2018,9(1). Diomede F, Gugliandolo A, Cardelli P, et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair[J]. Stem Cell Res. Ther, 2018,9(1).
12.
go back to reference Wang L, Liu C, Wu F. Low-level laser irradiation enhances the proliferation and osteogenic differentiation of PDLSCs via BMP signaling[J]. Lasers Med Sci. 2022;37(2):941–8.PubMedCrossRef Wang L, Liu C, Wu F. Low-level laser irradiation enhances the proliferation and osteogenic differentiation of PDLSCs via BMP signaling[J]. Lasers Med Sci. 2022;37(2):941–8.PubMedCrossRef
13.
go back to reference Si D, Su B, Zhang J, et al. Low-level laser therapy with different irradiation methods modulated the response of bone marrow mesenchymal stem cells in vitro[J]. Lasers Med Sci. 2022;37(9):3509–16.PubMedCrossRef Si D, Su B, Zhang J, et al. Low-level laser therapy with different irradiation methods modulated the response of bone marrow mesenchymal stem cells in vitro[J]. Lasers Med Sci. 2022;37(9):3509–16.PubMedCrossRef
15.
go back to reference Salehinejad P, Alitheen NB, Ali AM, et al. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly[J]. In Vitro Cell Dev Biol Anim. 2012;48(2):75–83.PubMedCrossRef Salehinejad P, Alitheen NB, Ali AM, et al. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly[J]. In Vitro Cell Dev Biol Anim. 2012;48(2):75–83.PubMedCrossRef
16.
go back to reference Yoon JH, Roh EY, Shin S, et al. Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from wharton’s jelly[J]. Biomed Res Int. 2013;2013:1–8. Yoon JH, Roh EY, Shin S, et al. Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from wharton’s jelly[J]. Biomed Res Int. 2013;2013:1–8.
17.
go back to reference Hilkens P, Gervois P, Fanton Y, et al. Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells[J]. Cell Tissue Res. 2013;353(1):65–78.PubMedCrossRef Hilkens P, Gervois P, Fanton Y, et al. Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells[J]. Cell Tissue Res. 2013;353(1):65–78.PubMedCrossRef
18.
go back to reference Mushahary D, Spittler A, Kasper C, et al. Isolation, cultivation, and characterization of human mesenchymal stem cells[J]. Cytometry A. 2018;93(1):19–31.PubMedCrossRef Mushahary D, Spittler A, Kasper C, et al. Isolation, cultivation, and characterization of human mesenchymal stem cells[J]. Cytometry A. 2018;93(1):19–31.PubMedCrossRef
20.
go back to reference Ullah M, Liu DD, Thakor AS. Mesenchymal stromal cell homing: mechanisms and strategies for improvement[J]. iScience. 2019;31(15):421–38.CrossRef Ullah M, Liu DD, Thakor AS. Mesenchymal stromal cell homing: mechanisms and strategies for improvement[J]. iScience. 2019;31(15):421–38.CrossRef
21.
go back to reference Kawana A, Hasebe Y, Kondo M. Effectiveness of Emergent CRT-D Treatment in a Case with Intractabl Ischemic Heart Failure[J]. J Card Fail. 2012;18:10–8.CrossRef Kawana A, Hasebe Y, Kondo M. Effectiveness of Emergent CRT-D Treatment in a Case with Intractabl Ischemic Heart Failure[J]. J Card Fail. 2012;18:10–8.CrossRef
22.
go back to reference Xing Y, Zhang Y, Wu X, et al. A comprehensive study on donor-matched comparisons of three types of mesenchymal stem cells-containing cells from human dental tissue[J]. J Periodontal Res. 2019;54(3):286–99.PubMedCrossRef Xing Y, Zhang Y, Wu X, et al. A comprehensive study on donor-matched comparisons of three types of mesenchymal stem cells-containing cells from human dental tissue[J]. J Periodontal Res. 2019;54(3):286–99.PubMedCrossRef
23.
go back to reference Fekrazad R, Asefi S, Allahdadi M, et al. Effect of photobiomodulation on mesenchymal stem cells[J]. Photomed Laser Surg. 2016;34(11):533–42.PubMedCrossRef Fekrazad R, Asefi S, Allahdadi M, et al. Effect of photobiomodulation on mesenchymal stem cells[J]. Photomed Laser Surg. 2016;34(11):533–42.PubMedCrossRef
24.
go back to reference Mussttaf R, Jenkins D, Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review[J]. Int J Radiat Biol. 2019;95(2):120–43.PubMedCrossRef Mussttaf R, Jenkins D, Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review[J]. Int J Radiat Biol. 2019;95(2):120–43.PubMedCrossRef
25.
go back to reference Gong C, Lu Y, Jia C, et al. Low-level green laser promotes wound healing after carbon dioxide fractional laser therapy[J]. J Cosmet Dermatol. 2022;21(11):5696–703.PubMedCrossRef Gong C, Lu Y, Jia C, et al. Low-level green laser promotes wound healing after carbon dioxide fractional laser therapy[J]. J Cosmet Dermatol. 2022;21(11):5696–703.PubMedCrossRef
26.
go back to reference Chen Z, Zhang R, Qin H, et al. The pulse light mode enhances the effect of photobiomodulation on B16F10 melanoma cells through autophagy pathway[J]. Lasers Med Sci. 2023;38(1):71.PubMedCrossRef Chen Z, Zhang R, Qin H, et al. The pulse light mode enhances the effect of photobiomodulation on B16F10 melanoma cells through autophagy pathway[J]. Lasers Med Sci. 2023;38(1):71.PubMedCrossRef
27.
go back to reference Bjordal JM. Low Level Laser Therapy (LLLT) and World Association for Laser Therapy (WALT) Dosage Recommendations[J]. Photomed Laser Surg. 2012;30(2):61–2.PubMedCrossRef Bjordal JM. Low Level Laser Therapy (LLLT) and World Association for Laser Therapy (WALT) Dosage Recommendations[J]. Photomed Laser Surg. 2012;30(2):61–2.PubMedCrossRef
28.
go back to reference Choi E, Yim J, Koo K, et al. Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts[J]. Journal of Periodontal & Implant Science. 2010;40(3):105.CrossRef Choi E, Yim J, Koo K, et al. Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts[J]. Journal of Periodontal & Implant Science. 2010;40(3):105.CrossRef
29.
go back to reference Dehdashtizadeh A, Esnaashari N, Farhad SZ, et al. The effect of laser irradiation and doxycycline application on the production of matrix metalloproteinase-8 and collagen I from cultured human periodontal ligament cells[J]. Dent Res J (Isfahan). 2020;17(3):213–8.PubMedCrossRef Dehdashtizadeh A, Esnaashari N, Farhad SZ, et al. The effect of laser irradiation and doxycycline application on the production of matrix metalloproteinase-8 and collagen I from cultured human periodontal ligament cells[J]. Dent Res J (Isfahan). 2020;17(3):213–8.PubMedCrossRef
30.
go back to reference Schwarz F, Aoki A, Becker J, et al. Laser application in non-surgical periodontal therapy: a systematic review[J]. J Clin Periodontol. 2008;35(s8):29–44.PubMedCrossRef Schwarz F, Aoki A, Becker J, et al. Laser application in non-surgical periodontal therapy: a systematic review[J]. J Clin Periodontol. 2008;35(s8):29–44.PubMedCrossRef
31.
go back to reference Sumra N, Kulshrestha R, Umale V, et al. Lasers in non-surgical periodontal treatment - a review[J]. J Cosmet Laser Ther. 2019;21(5):255–61.PubMedCrossRef Sumra N, Kulshrestha R, Umale V, et al. Lasers in non-surgical periodontal treatment - a review[J]. J Cosmet Laser Ther. 2019;21(5):255–61.PubMedCrossRef
32.
go back to reference Alghamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells[J]. Lasers Med Sci. 2012;27(1):237–49.PubMedCrossRef Alghamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells[J]. Lasers Med Sci. 2012;27(1):237–49.PubMedCrossRef
33.
go back to reference Petri AD, Teixeira LN, Crippa GE, et al. Effects of low-level laser therapy on human osteoblastic cells grown on titanium[J]. Braz Dent J. 2010;21(6):491–8.PubMedCrossRef Petri AD, Teixeira LN, Crippa GE, et al. Effects of low-level laser therapy on human osteoblastic cells grown on titanium[J]. Braz Dent J. 2010;21(6):491–8.PubMedCrossRef
34.
go back to reference Frozanfar A, Ramezani M, Rahpeyma A, et al. The Effects of low level laser therapy on the expression of collagen type I gene and proliferation of human gingival fibroblasts (Hgf3-Pi 53): in vitro study[J]. Iran J Basic Med Sci. 2013;16(10):1071–4.PubMedPubMedCentral Frozanfar A, Ramezani M, Rahpeyma A, et al. The Effects of low level laser therapy on the expression of collagen type I gene and proliferation of human gingival fibroblasts (Hgf3-Pi 53): in vitro study[J]. Iran J Basic Med Sci. 2013;16(10):1071–4.PubMedPubMedCentral
35.
go back to reference Nie F, Hao S, Ji Y, et al. Biphasic dose response in the anti-inflammation experiment of PBM[J]. Lasers Med Sci. 2023;38(1):66.PubMedCrossRef Nie F, Hao S, Ji Y, et al. Biphasic dose response in the anti-inflammation experiment of PBM[J]. Lasers Med Sci. 2023;38(1):66.PubMedCrossRef
36.
go back to reference Kiro NE, Hamblin MR, Abrahamse H. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation[J]. Tumor Biology. 2017;39(6):568835005.CrossRef Kiro NE, Hamblin MR, Abrahamse H. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation[J]. Tumor Biology. 2017;39(6):568835005.CrossRef
37.
go back to reference Amid R, Kadkhodazadeh M, Gilvari SM, et al. Effects of two protocols of low-level laser therapy on the proliferation and differentiation of human dental pulp stem cells on sandblasted titanium discs: an in vitro study[J]. J Lasers Med Sci. 2022;13: e1.PubMedPubMedCentralCrossRef Amid R, Kadkhodazadeh M, Gilvari SM, et al. Effects of two protocols of low-level laser therapy on the proliferation and differentiation of human dental pulp stem cells on sandblasted titanium discs: an in vitro study[J]. J Lasers Med Sci. 2022;13: e1.PubMedPubMedCentralCrossRef
38.
go back to reference Zhao TT, Liu JJ, Zhu J, et al. SDF-1/CXCR4-mediated stem cell mobilization involved in cardioprotective effects of electroacupuncture on mouse with myocardial infarction[J]. Oxid Med Cell Longev. 2022;2022:4455183.PubMedPubMedCentralCrossRef Zhao TT, Liu JJ, Zhu J, et al. SDF-1/CXCR4-mediated stem cell mobilization involved in cardioprotective effects of electroacupuncture on mouse with myocardial infarction[J]. Oxid Med Cell Longev. 2022;2022:4455183.PubMedPubMedCentralCrossRef
39.
go back to reference Zhang HZ, Han S, Kim SW. SDF-1-edited human amniotic mesenchymal stem cells stimulate angiogenesis in treating hindlimb ischaemia[J]. J Cell Mol Med. 2022;26(13):3726–35.PubMedPubMedCentralCrossRef Zhang HZ, Han S, Kim SW. SDF-1-edited human amniotic mesenchymal stem cells stimulate angiogenesis in treating hindlimb ischaemia[J]. J Cell Mol Med. 2022;26(13):3726–35.PubMedPubMedCentralCrossRef
40.
go back to reference Eduardo FDP, Bueno DF, de Freitas PM, et al. Stem cell proliferation under low intensity laser irradiation: A preliminary study[J]. Lasers Surg Med. 2008;40(6):433–8.PubMedCrossRef Eduardo FDP, Bueno DF, de Freitas PM, et al. Stem cell proliferation under low intensity laser irradiation: A preliminary study[J]. Lasers Surg Med. 2008;40(6):433–8.PubMedCrossRef
41.
go back to reference Wynn RF, Hart CA, Corradi-Perini C, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow[J]. Blood. 2004;104(9):2643–5.PubMedCrossRef Wynn RF, Hart CA, Corradi-Perini C, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow[J]. Blood. 2004;104(9):2643–5.PubMedCrossRef
42.
go back to reference Wang Y, Deng Y, Zhou G. SDF-1α/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model[J]. Brain Res. 2007;1195:104–12.PubMedCrossRef Wang Y, Deng Y, Zhou G. SDF-1α/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model[J]. Brain Res. 2007;1195:104–12.PubMedCrossRef
43.
go back to reference Du L, Yang P, Ge S. Stromal cell-derived factor-1 significantly induces proliferation, migration, and collagen type I expression in a human periodontal ligament stem cell subpopulation[J]. J Periodontol (1970). 2012;83(3):379–88.CrossRef Du L, Yang P, Ge S. Stromal cell-derived factor-1 significantly induces proliferation, migration, and collagen type I expression in a human periodontal ligament stem cell subpopulation[J]. J Periodontol (1970). 2012;83(3):379–88.CrossRef
44.
go back to reference Jin W, Liang X, Brooks A, et al. Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice[J]. PeerJ. 2018;6: e6072.PubMedPubMedCentralCrossRef Jin W, Liang X, Brooks A, et al. Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice[J]. PeerJ. 2018;6: e6072.PubMedPubMedCentralCrossRef
45.
go back to reference Zhang H, Li X, Li J, et al. SDF-1 mediates mesenchymal stem cell recruitment and migration via the SDF-1/CXCR4 axis in bone defect[J]. J Bone Miner Metab. 2021;39(2):126–38.PubMedCrossRef Zhang H, Li X, Li J, et al. SDF-1 mediates mesenchymal stem cell recruitment and migration via the SDF-1/CXCR4 axis in bone defect[J]. J Bone Miner Metab. 2021;39(2):126–38.PubMedCrossRef
46.
go back to reference Wang D, Lyu Y, Yang Y, et al. Schwann cell-derived EVs facilitate dental pulp regeneration through endogenous stem cell recruitment via SDF-1/CXCR4 axis[J]. Acta Biomater. 2022;140:610–24.PubMedCrossRef Wang D, Lyu Y, Yang Y, et al. Schwann cell-derived EVs facilitate dental pulp regeneration through endogenous stem cell recruitment via SDF-1/CXCR4 axis[J]. Acta Biomater. 2022;140:610–24.PubMedCrossRef
47.
48.
49.
go back to reference Baishier. The role and mechanism of SDF-1 / CXCR4 axis in the treatment of regenerated dental pulp[J]. 2019. Baishier. The role and mechanism of SDF-1 / CXCR4 axis in the treatment of regenerated dental pulp[J]. 2019.
50.
go back to reference Cao Jian.SDF1 / CXCR4 promotes the migration of bone marrow mesenchymal stem cells and participates in distraction osteogenesis.[J]. 2012. Cao Jian.SDF1 / CXCR4 promotes the migration of bone marrow mesenchymal stem cells and participates in distraction osteogenesis.[J]. 2012.
51.
52.
go back to reference Li S, Deng L, Gong L, et al. Upregulation of CXCR4 favoring neural-like cells migration via AKT activation[J]. Neurosci Res. 2010;67(4):293–9.PubMedCrossRef Li S, Deng L, Gong L, et al. Upregulation of CXCR4 favoring neural-like cells migration via AKT activation[J]. Neurosci Res. 2010;67(4):293–9.PubMedCrossRef
Metadata
Title
Effect of an low-energy Nd: YAG laser on periodontal ligament stem cell homing through the SDF-1/CXCR4 signaling pathway
Authors
Nan Wu
Jianing Song
Xin Liu
Xiangtao Ma
Xiaoman Guo
Taohong Liu
Mingxuan Wu
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Laser
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03132-6

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue