Skip to main content
Top
Published in: Virchows Archiv 5/2017

01-05-2017 | Original Article

Langerhans, plasmacytoid dendritic and myeloid-derived suppressor cell levels in mycosis fungoides vary according to the stage of the disease

Authors: Alessandro Pileri, Claudio Agostinelli, Maurizio Sessa, Pietro Quaglino, Marco Santucci, Carlo Tomasini, Vieri Grandi, Paolo Fava, Chiara Astrua, Simona Righi, Annalisa Patrizi, Stefano A. Pileri, Nicola Pimpinelli

Published in: Virchows Archiv | Issue 5/2017

Login to get access

Abstract

Mycosis fungoides (MF) is characterized by a switch from indolent behaviour in the early stages to a worse clinical outcome in the advanced ones. Recently, various studies have investigated the role the microenvironment might play in such a switch. We have analysed the distribution of Langerhans cells, plasmacytoid dendritic cells and myeloid-derived suppressor cells in 46 MF cases in various stages, aiming to assess whether changes occur from early to advanced stage. We have investigated the number of langerin, CD303 and arginase-1 positive cells and their distribution at high power. Data were analysed using t test for continuous variables, χ 2 tests or Fisher’s exact test for categorical variables, as well as analysis of covariance. In comparing stages IA/B to IIB, we observed a significant decrease in Langerhans cells (p value 0.03) and a significant increase in CD303 and arginase-1 positive cells (p value <0.01 for both markers). Furthermore, a significant increase in Langerhans cells only was observed in stage IIB in comparison to stage III (p = 0.02), while in stage IV, a significant decrease in Langerhans cells was noted in comparison to stage III (p = 0.02). Our data suggest that changes in the microenvironment might influence disease progression, especially from stages IA/B to IIB, opening new scenarios in MF therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pileri A Jr, Patrizi A, Agostinelli C et al (2011) Primary cutaneous lymphomas: a reprisal. Semin Diagn Pathol 28:214–233CrossRefPubMed Pileri A Jr, Patrizi A, Agostinelli C et al (2011) Primary cutaneous lymphomas: a reprisal. Semin Diagn Pathol 28:214–233CrossRefPubMed
2.
go back to reference Quaglino P, Pimpinelli N, Berti E et al (2012) Mycosis fungoides: disease evolution of the “lion queen” revisited. G Ital Dermatol Venereol 147:523–531PubMed Quaglino P, Pimpinelli N, Berti E et al (2012) Mycosis fungoides: disease evolution of the “lion queen” revisited. G Ital Dermatol Venereol 147:523–531PubMed
3.
go back to reference Scarisbrick JJ, Prince HM, Vermeer MH et al (2015) Cutaneous lymphoma international consortium study of outcome in advanced stages of mycosis fungoides and Sézary syndrome: effect of specific prognostic markers on survival and development of a prognostic model. J Clin Oncol 33:3766–3773CrossRefPubMedPubMedCentral Scarisbrick JJ, Prince HM, Vermeer MH et al (2015) Cutaneous lymphoma international consortium study of outcome in advanced stages of mycosis fungoides and Sézary syndrome: effect of specific prognostic markers on survival and development of a prognostic model. J Clin Oncol 33:3766–3773CrossRefPubMedPubMedCentral
4.
go back to reference Pimpinelli N, Olsen EA, Santucci M et al (2005) Defining early mycosis fungoides. J Am Acad Dermatol 53:1053–1063CrossRefPubMed Pimpinelli N, Olsen EA, Santucci M et al (2005) Defining early mycosis fungoides. J Am Acad Dermatol 53:1053–1063CrossRefPubMed
6.
go back to reference Wong HK, Mishra A, Hake T et al (2011) Evolving insights in the pathogenesis and therapy of cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome). Br J Haematol 155:150–166CrossRefPubMedPubMedCentral Wong HK, Mishra A, Hake T et al (2011) Evolving insights in the pathogenesis and therapy of cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome). Br J Haematol 155:150–166CrossRefPubMedPubMedCentral
7.
go back to reference Wilcox RA (2016) Cutaneous T-cell lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol 91:151–165CrossRefPubMed Wilcox RA (2016) Cutaneous T-cell lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol 91:151–165CrossRefPubMed
8.
go back to reference Dunn GP, Old LJ, Schreiber RD (2004a) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360CrossRefPubMed Dunn GP, Old LJ, Schreiber RD (2004a) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360CrossRefPubMed
9.
go back to reference Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998CrossRefPubMed Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998CrossRefPubMed
10.
go back to reference Dunn GP, Old LJ, Schreiber RD (2004b) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148CrossRefPubMed Dunn GP, Old LJ, Schreiber RD (2004b) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148CrossRefPubMed
11.
go back to reference Smyth MJ, Godfrey DI, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–299CrossRefPubMed Smyth MJ, Godfrey DI, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–299CrossRefPubMed
12.
go back to reference Berger CL, Tigelaar R, Cohen J et al (2005) Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 105:1640–1647CrossRefPubMed Berger CL, Tigelaar R, Cohen J et al (2005) Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 105:1640–1647CrossRefPubMed
13.
go back to reference Fried I, Cerroni L (2012) FOXP3 in sequential biopsies of progressive mycosis fungoides. Am J Dermatopathol 34:263–265CrossRefPubMed Fried I, Cerroni L (2012) FOXP3 in sequential biopsies of progressive mycosis fungoides. Am J Dermatopathol 34:263–265CrossRefPubMed
14.
go back to reference Goos M, Kaiserling E, Lennert K (1976) Mycosis fungoides: model for T-lymphocyte homing to the skin? Br J Dermatol 94:221–222CrossRefPubMed Goos M, Kaiserling E, Lennert K (1976) Mycosis fungoides: model for T-lymphocyte homing to the skin? Br J Dermatol 94:221–222CrossRefPubMed
15.
go back to reference Pimpinelli N, Santucci M, Romagnoli P et al (1994) Dendritic cells in T- and B-cell proliferation in the skin. Dermatol Clin 12:255–270PubMed Pimpinelli N, Santucci M, Romagnoli P et al (1994) Dendritic cells in T- and B-cell proliferation in the skin. Dermatol Clin 12:255–270PubMed
16.
go back to reference Lüftl M, Feng A, Licha E et al (2002) Dendritic cells and apoptosis in mycosis fungoides. Br J Dermatol 147:1171–1179CrossRefPubMed Lüftl M, Feng A, Licha E et al (2002) Dendritic cells and apoptosis in mycosis fungoides. Br J Dermatol 147:1171–1179CrossRefPubMed
17.
go back to reference Der-Petrossian M, Valencak J, Jonak C et al (2011) Dermal infiltrates of cutaneous T-cell lymphomas with epidermotropism but not other cutaneous lymphomas are abundant with langerin+ dendritic cells. J Eur Acad Dermatol Venereol 25:922–927CrossRefPubMed Der-Petrossian M, Valencak J, Jonak C et al (2011) Dermal infiltrates of cutaneous T-cell lymphomas with epidermotropism but not other cutaneous lymphomas are abundant with langerin+ dendritic cells. J Eur Acad Dermatol Venereol 25:922–927CrossRefPubMed
18.
go back to reference Schlapbach C, Ochsenbein A, Kaelin U et al (2010) High numbers of DC-SIGN+ dendritic cells in lesional skin of cutaneous T-cell lymphoma. J Am Acad Dermatol 62:995–1004CrossRefPubMed Schlapbach C, Ochsenbein A, Kaelin U et al (2010) High numbers of DC-SIGN+ dendritic cells in lesional skin of cutaneous T-cell lymphoma. J Am Acad Dermatol 62:995–1004CrossRefPubMed
19.
go back to reference Schwingshackl P, Obermoser G, Nguyen VA et al (2012) Distribution and maturation of skin dendritic cell subsets in two forms of cutaneous T-cell lymphoma: mycosis fungoides and Sézary syndrome. Acta Derm Venereol 92:269–275CrossRefPubMed Schwingshackl P, Obermoser G, Nguyen VA et al (2012) Distribution and maturation of skin dendritic cell subsets in two forms of cutaneous T-cell lymphoma: mycosis fungoides and Sézary syndrome. Acta Derm Venereol 92:269–275CrossRefPubMed
20.
go back to reference Zhang QA, Chen ZQ, Chen MH et al (2014) The number of regular T cells and immature dendritic cells involved in mycosis fungoides is linked to the tumor stage. Eur Rev Med Pharmacol Sci 18:553–558PubMed Zhang QA, Chen ZQ, Chen MH et al (2014) The number of regular T cells and immature dendritic cells involved in mycosis fungoides is linked to the tumor stage. Eur Rev Med Pharmacol Sci 18:553–558PubMed
22.
23.
go back to reference Youn JI, Gabrilovich DI (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 40:2969–2975CrossRefPubMedPubMedCentral Youn JI, Gabrilovich DI (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 40:2969–2975CrossRefPubMedPubMedCentral
24.
go back to reference Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654CrossRefPubMed Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654CrossRefPubMed
25.
go back to reference Rodríguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191CrossRefPubMedPubMedCentral Rodríguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191CrossRefPubMedPubMedCentral
26.
go back to reference Strauss L, Sangaletti S, Consonni FM et al (2015) RORC1 regulates tumor-promoting “emergency” granulo-monocytopoiesis. Cancer Cell 28:253–269CrossRefPubMed Strauss L, Sangaletti S, Consonni FM et al (2015) RORC1 regulates tumor-promoting “emergency” granulo-monocytopoiesis. Cancer Cell 28:253–269CrossRefPubMed
27.
go back to reference Rodriguez PC, Hernandez CP, Quiceno D et al (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939CrossRefPubMedPubMedCentral Rodriguez PC, Hernandez CP, Quiceno D et al (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939CrossRefPubMedPubMedCentral
28.
go back to reference Serafini P, Mgebroff S, Noonan K et al (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68:5439–5449CrossRefPubMedPubMedCentral Serafini P, Mgebroff S, Noonan K et al (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68:5439–5449CrossRefPubMedPubMedCentral
29.
go back to reference Huang B, Pan PY, Li Q et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131CrossRefPubMed Huang B, Pan PY, Li Q et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131CrossRefPubMed
30.
go back to reference Pan PY, Ma G, Weber KJ et al (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 70:99–108CrossRefPubMed Pan PY, Ma G, Weber KJ et al (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 70:99–108CrossRefPubMed
31.
go back to reference Bunt SK, Yang L, Sinha P et al (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67:10019–10026CrossRefPubMedPubMedCentral Bunt SK, Yang L, Sinha P et al (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67:10019–10026CrossRefPubMedPubMedCentral
32.
go back to reference Srivastava MK, Sinha P, Clements VK et al (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77CrossRefPubMed Srivastava MK, Sinha P, Clements VK et al (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77CrossRefPubMed
33.
go back to reference Hanson EM, Clements VK, Sinha P et al (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol 15(183):937–944CrossRef Hanson EM, Clements VK, Sinha P et al (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol 15(183):937–944CrossRef
34.
35.
go back to reference Wu AA, Drake V, Huang HS et al (2015) Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 4:e1016700CrossRefPubMedPubMedCentral Wu AA, Drake V, Huang HS et al (2015) Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 4:e1016700CrossRefPubMedPubMedCentral
36.
go back to reference Dette H, Neumeyer N (2001) Nonparametric analysis of covariance. Ann Stat 29:1361–1400CrossRef Dette H, Neumeyer N (2001) Nonparametric analysis of covariance. Ann Stat 29:1361–1400CrossRef
37.
go back to reference Young SG, Bowman AW (1995) Non-parametric analysis of covariance. Biometrics 51:920–931CrossRef Young SG, Bowman AW (1995) Non-parametric analysis of covariance. Biometrics 51:920–931CrossRef
38.
go back to reference Wang XF, Ye D (2010) On nonparametric comparison of images and regression surfaces. J Stat Plann Inference 140:2875–2884CrossRef Wang XF, Ye D (2010) On nonparametric comparison of images and regression surfaces. J Stat Plann Inference 140:2875–2884CrossRef
39.
go back to reference Gabrilovich D, Ishida T, Oyama T et al (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166PubMed Gabrilovich D, Ishida T, Oyama T et al (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166PubMed
40.
go back to reference Pileri A, Agostinelli C, Righi S et al (2015) Vascular endothelial growth factor A (VEGFA) expression in mycosis fungoides. Histopathology 66:173–181CrossRefPubMed Pileri A, Agostinelli C, Righi S et al (2015) Vascular endothelial growth factor A (VEGFA) expression in mycosis fungoides. Histopathology 66:173–181CrossRefPubMed
41.
go back to reference Kim YH, Gratzinger D, Harrison C et al (2012) In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood 119:355–363CrossRefPubMedPubMedCentral Kim YH, Gratzinger D, Harrison C et al (2012) In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood 119:355–363CrossRefPubMedPubMedCentral
42.
go back to reference Mauti LA, Le Bitoux MA, Baumer K et al (2011) Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. J Clin Invest 121:2794–2807CrossRefPubMedPubMedCentral Mauti LA, Le Bitoux MA, Baumer K et al (2011) Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. J Clin Invest 121:2794–2807CrossRefPubMedPubMedCentral
43.
go back to reference Mairhofer DG, Ortner D, Tripp CH et al (2015) Impaired gp100-specific CD8(+) T-cell responses in the presence of myeloid-derived suppressor cells in a spontaneous mouse melanoma model. J Invest Dermatol 135:2785–2793CrossRefPubMedPubMedCentral Mairhofer DG, Ortner D, Tripp CH et al (2015) Impaired gp100-specific CD8(+) T-cell responses in the presence of myeloid-derived suppressor cells in a spontaneous mouse melanoma model. J Invest Dermatol 135:2785–2793CrossRefPubMedPubMedCentral
44.
go back to reference Pérez C, González-Rincón J, Onaindia A et al (2015) Mutated JAK kinases and deregulated STAT activity are potential therapeutic targets in cutaneous T-cell lymphoma. Haematologica 100:e450–e453CrossRefPubMedPubMedCentral Pérez C, González-Rincón J, Onaindia A et al (2015) Mutated JAK kinases and deregulated STAT activity are potential therapeutic targets in cutaneous T-cell lymphoma. Haematologica 100:e450–e453CrossRefPubMedPubMedCentral
45.
go back to reference Dufait I, Van Valckenborgh E, Menu E, et al. (2016) Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: an opportunity for cancer therapy. Oncotarget. [Epub ahead of print]. Dufait I, Van Valckenborgh E, Menu E, et al. (2016) Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: an opportunity for cancer therapy. Oncotarget. [Epub ahead of print].
46.
go back to reference Fava P, Bergallo M, Astrua C, et al. (2016) miR-155 expression in primary cutaneous T- cell lymphomas (CTCL). J Eur Acad Dermatol Venereol. [Epub ahead of print]. Fava P, Bergallo M, Astrua C, et al. (2016) miR-155 expression in primary cutaneous T- cell lymphomas (CTCL). J Eur Acad Dermatol Venereol. [Epub ahead of print].
47.
go back to reference Chen S, Zhang Y, Kuzel TM et al (2015) Regulating tumor myeloid-derived suppressor cells by microRNAs. Cancer Cell Microenviron 2:e637PubMedPubMedCentral Chen S, Zhang Y, Kuzel TM et al (2015) Regulating tumor myeloid-derived suppressor cells by microRNAs. Cancer Cell Microenviron 2:e637PubMedPubMedCentral
48.
go back to reference Kim S, Song JH, Kim S et al (2016) Loss of oncogenic miR-155 in tumor cells promotes tumor growth by enhancing C/EBP-β-mediated MDSC infiltration. Oncotarget 7:11094–11112PubMedPubMedCentral Kim S, Song JH, Kim S et al (2016) Loss of oncogenic miR-155 in tumor cells promotes tumor growth by enhancing C/EBP-β-mediated MDSC infiltration. Oncotarget 7:11094–11112PubMedPubMedCentral
49.
go back to reference Sasso MS, Lollo G, Pitorre M et al (2016) Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy. Biomaterials 96:47–62CrossRefPubMed Sasso MS, Lollo G, Pitorre M et al (2016) Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy. Biomaterials 96:47–62CrossRefPubMed
50.
go back to reference He W, Liang P, Guo G et al (2016) Re-polarizing myeloid-derived suppressor cells (MDSCs) with cationic polymers for cancer immunotherapy. Sci Rep 6:24506CrossRefPubMedPubMedCentral He W, Liang P, Guo G et al (2016) Re-polarizing myeloid-derived suppressor cells (MDSCs) with cationic polymers for cancer immunotherapy. Sci Rep 6:24506CrossRefPubMedPubMedCentral
51.
go back to reference Campbell JJ, Clark RA, Watanabe R et al (2010) Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood 116:767–771CrossRefPubMedPubMedCentral Campbell JJ, Clark RA, Watanabe R et al (2010) Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood 116:767–771CrossRefPubMedPubMedCentral
Metadata
Title
Langerhans, plasmacytoid dendritic and myeloid-derived suppressor cell levels in mycosis fungoides vary according to the stage of the disease
Authors
Alessandro Pileri
Claudio Agostinelli
Maurizio Sessa
Pietro Quaglino
Marco Santucci
Carlo Tomasini
Vieri Grandi
Paolo Fava
Chiara Astrua
Simona Righi
Annalisa Patrizi
Stefano A. Pileri
Nicola Pimpinelli
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Virchows Archiv / Issue 5/2017
Print ISSN: 0945-6317
Electronic ISSN: 1432-2307
DOI
https://doi.org/10.1007/s00428-017-2107-1

Other articles of this Issue 5/2017

Virchows Archiv 5/2017 Go to the issue