Skip to main content
Top
Published in: Skeletal Radiology 8/2023

19-01-2023 | Langerhans Cell Histiocytosis | Review Article

Update of pediatric bone tumors—other mesenchymal tumors of bone, hematopoietic neoplasms of bone, and WHO classification of undifferentiated small round cell sarcomas of bone

Authors: Annie Wang, Ezekiel Maloney, Khalid Al-Dasuqi, Lina Irshaid, Atif Ahmed, Andrew Haims, Jack Porrino

Published in: Skeletal Radiology | Issue 8/2023

Login to get access

Abstract

There are numerous bone tumors in the pediatric population, with imaging playing an essential role in diagnosis and management. Our understanding of certain bone tumors has rapidly evolved over the past decade with advancements in next-generation genetic sequencing techniques. This increased level of understanding has altered the nomenclature, management approach, and prognosis of certain lesions. We provide a detailed update of bone tumors that occur in the pediatric population with emphasis on the recently released nomenclature provided in the 5th edition of the World Health Organization Classification of Soft Tissue and Bone Tumours. We discuss other mesenchymal tumors of bone, hematopoietic neoplasms of bone, and WHO classification of undifferentiated small round cell sarcomas of bone. We have detailed osteogenic tumors and osteoclastic giant cell-rich tumors, as well as notochordal tumors, chondrogenic tumors, and vascular tumors of the bone in separate manuscripts.
Literature
1.
go back to reference WHO Classification: of Tumours Editorial Board. WHO Classification of Tumours Editorial Board: Soft Tissue and Bone Tumours. 5th ed. Lyon (France): International Agency for Research on Cancer; 2020. WHO Classification: of Tumours Editorial Board. WHO Classification of Tumours Editorial Board: Soft Tissue and Bone Tumours. 5th ed. Lyon (France): International Agency for Research on Cancer; 2020.
2.
go back to reference Choi JH, Ro JY. The 2020 WHO Classification of Tumors of Bone: an updated review. Adv Anat Pathol. 2021;28:119–38.CrossRefPubMed Choi JH, Ro JY. The 2020 WHO Classification of Tumors of Bone: an updated review. Adv Anat Pathol. 2021;28:119–38.CrossRefPubMed
3.
go back to reference Anderson WJ, Doyle LA. Updates from the 2020 World Health Organization Classification of Soft Tissue and Bone Tumours. Histopathology. 2021;78:644–57.CrossRefPubMed Anderson WJ, Doyle LA. Updates from the 2020 World Health Organization Classification of Soft Tissue and Bone Tumours. Histopathology. 2021;78:644–57.CrossRefPubMed
6.
go back to reference Gleason BC, Liegl-Atzwanger B, Kozakewich HP, Connolly S, Gebhardt MC, Fletcher JA, et al. Osteofibrous dysplasia and adamantinoma in children and adolescents: a clinicopathologic reappraisal. Am J Surg Pathol. 2008;32:363–76.CrossRefPubMed Gleason BC, Liegl-Atzwanger B, Kozakewich HP, Connolly S, Gebhardt MC, Fletcher JA, et al. Osteofibrous dysplasia and adamantinoma in children and adolescents: a clinicopathologic reappraisal. Am J Surg Pathol. 2008;32:363–76.CrossRefPubMed
7.
go back to reference Hazelbag HM, Wessels JW, Mollevangers P, van den Berg E, Molenaar WM, Hogendoorn PC. Cytogenetic analysis of adamantinoma of long bones: further indications for a common histogenesis with osteofibrous dysplasia. Cancer Genet Cytogenet. 1997;97:5–11.CrossRefPubMed Hazelbag HM, Wessels JW, Mollevangers P, van den Berg E, Molenaar WM, Hogendoorn PC. Cytogenetic analysis of adamantinoma of long bones: further indications for a common histogenesis with osteofibrous dysplasia. Cancer Genet Cytogenet. 1997;97:5–11.CrossRefPubMed
8.
go back to reference Bone Tumor Pathology, An Issue of Surgical Pathology Clinics, 1st Edition: Edited by Gunnlaugur Petur Nielsen, MD. Elsevier; 240. Accessed 9 Nov 2021. Bone Tumor Pathology, An Issue of Surgical Pathology Clinics, 1st Edition: Edited by Gunnlaugur Petur Nielsen, MD. Elsevier; 240. Accessed 9 Nov 2021.
9.
go back to reference Park JW, Lee C, Han I, Cho H-S, Kim H-S. Optimal Treatment of Osteofibrous Dysplasia of the Tibia. J Pediatr Orthop. 2018;38:e404–10.CrossRefPubMed Park JW, Lee C, Han I, Cho H-S, Kim H-S. Optimal Treatment of Osteofibrous Dysplasia of the Tibia. J Pediatr Orthop. 2018;38:e404–10.CrossRefPubMed
10.
go back to reference Westacott D, Kannu P, Stimec J, Hopyan S, Howard A. Osteofibrous dysplasia of the tibia in children: outcome without resection. J Pediatr Orthop. 2019;39:e614–21.CrossRefPubMed Westacott D, Kannu P, Stimec J, Hopyan S, Howard A. Osteofibrous dysplasia of the tibia in children: outcome without resection. J Pediatr Orthop. 2019;39:e614–21.CrossRefPubMed
11.
go back to reference Scholfield DW, Sadozai Z, Ghali C, Sumathi V, Douis H, Gaston L, et al. Does osteofibrous dysplasia progress to adamantinoma and how should they be treated? Bone Joint J. 2017;99-B:409–16. Scholfield DW, Sadozai Z, Ghali C, Sumathi V, Douis H, Gaston L, et al. Does osteofibrous dysplasia progress to adamantinoma and how should they be treated? Bone Joint J. 2017;99-B:409–16.
12.
go back to reference Kitsoulis P, Charchanti A, Paraskevas G, Marini A, Karatzias G. Adamantinoma. Acta Orthop Belg. 2007;73:425–31.PubMed Kitsoulis P, Charchanti A, Paraskevas G, Marini A, Karatzias G. Adamantinoma. Acta Orthop Belg. 2007;73:425–31.PubMed
13.
14.
go back to reference Hazelbag HM, Laforga JB, Roels HJL, Hogendoorn PCW. Dedifferentiated adamantinoma with revertant mesenchymal phenotype. Am J Surg Pathol. 2003;27:1530–7.CrossRefPubMed Hazelbag HM, Laforga JB, Roels HJL, Hogendoorn PCW. Dedifferentiated adamantinoma with revertant mesenchymal phenotype. Am J Surg Pathol. 2003;27:1530–7.CrossRefPubMed
15.
go back to reference Kashima TG, Dongre A, Flanagan AM, Hogendoorn PCW, Taylor R, Athanasou NA. Podoplanin expression in adamantinoma of long bones and osteofibrous dysplasia. Virchows Arch. 2011;459:41–6.CrossRefPubMed Kashima TG, Dongre A, Flanagan AM, Hogendoorn PCW, Taylor R, Athanasou NA. Podoplanin expression in adamantinoma of long bones and osteofibrous dysplasia. Virchows Arch. 2011;459:41–6.CrossRefPubMed
16.
go back to reference Dickson BC, Gortzak Y, Bell RS, Ferguson PC, Howarth DJC, Wunder JS, et al. p63 expression in adamantinoma. Virchows Arch. 2011;459:109–13.CrossRefPubMed Dickson BC, Gortzak Y, Bell RS, Ferguson PC, Howarth DJC, Wunder JS, et al. p63 expression in adamantinoma. Virchows Arch. 2011;459:109–13.CrossRefPubMed
17.
go back to reference Schutgens EM, Picci P, Baumhoer D, Pollock R, Bovée JVMG, Hogendoorn PCW, et al. Surgical Outcome and oncological survival of osteofibrous dysplasia-like and classic adamantinomas: an international multicenter study of 318 cases. J Bone Joint Surg Am. 2020;102:1703–13.CrossRefPubMed Schutgens EM, Picci P, Baumhoer D, Pollock R, Bovée JVMG, Hogendoorn PCW, et al. Surgical Outcome and oncological survival of osteofibrous dysplasia-like and classic adamantinomas: an international multicenter study of 318 cases. J Bone Joint Surg Am. 2020;102:1703–13.CrossRefPubMed
18.
go back to reference Khanna M, Delaney D, Tirabosco R, Saifuddin A. Osteofibrous dysplasia, osteofibrous dysplasia-like adamantinoma and adamantinoma: correlation of radiological imaging features with surgical histology and assessment of the use of radiology in contributing to needle biopsy diagnosis. Skeletal Radiol. 2008;37:1077–84.CrossRefPubMed Khanna M, Delaney D, Tirabosco R, Saifuddin A. Osteofibrous dysplasia, osteofibrous dysplasia-like adamantinoma and adamantinoma: correlation of radiological imaging features with surgical histology and assessment of the use of radiology in contributing to needle biopsy diagnosis. Skeletal Radiol. 2008;37:1077–84.CrossRefPubMed
19.
go back to reference Unni, KK. Dahlin’s Bone Tumors: General Aspects and Data on 11,087 Cases, ed 5. Philadelphia: Lippincott-Raven; 1996. pp. 463. Unni, KK. Dahlin’s Bone Tumors: General Aspects and Data on 11,087 Cases, ed 5. Philadelphia: Lippincott-Raven; 1996. pp. 463.
20.
go back to reference Van der Woude H-J, Hazelbag H-M, Bloem JL, Taminiau AHM, Hogendoorn PCW. MRI of adamantinoma of long bones in correlation with histopathology. AJR Am J Roentgenol. 2004;183:1737–44.CrossRefPubMed Van der Woude H-J, Hazelbag H-M, Bloem JL, Taminiau AHM, Hogendoorn PCW. MRI of adamantinoma of long bones in correlation with histopathology. AJR Am J Roentgenol. 2004;183:1737–44.CrossRefPubMed
21.
go back to reference Aytekin MN, Öztürk R, Amer K. Epidemiological study of adamantinoma from US surveillance, epidemiology, and end results program: III retrospective analysis. J Oncol. 2020;2020:2809647.CrossRefPubMedPubMedCentral Aytekin MN, Öztürk R, Amer K. Epidemiological study of adamantinoma from US surveillance, epidemiology, and end results program: III retrospective analysis. J Oncol. 2020;2020:2809647.CrossRefPubMedPubMedCentral
22.
go back to reference Deng Z, Gong L, Zhang Q, Hao L, Ding Y, Niu X. Outcome of osteofibrous dysplasia-like versus classic adamantinoma of long bones: a single-institution experience. J Orthop Surg Res. 2020;15:268.CrossRefPubMedPubMedCentral Deng Z, Gong L, Zhang Q, Hao L, Ding Y, Niu X. Outcome of osteofibrous dysplasia-like versus classic adamantinoma of long bones: a single-institution experience. J Orthop Surg Res. 2020;15:268.CrossRefPubMedPubMedCentral
23.
go back to reference Pižem J, Šekoranja D, Zupan A, Boštjančič E, Matjašič A, Mavčič B, et al. FUS-NFATC2 or EWSR1-NFATC2 fusions are present in a large proportion of simple bone cysts. Am J Surg Pathol. 2020;44:1623–34.CrossRefPubMed Pižem J, Šekoranja D, Zupan A, Boštjančič E, Matjašič A, Mavčič B, et al. FUS-NFATC2 or EWSR1-NFATC2 fusions are present in a large proportion of simple bone cysts. Am J Surg Pathol. 2020;44:1623–34.CrossRefPubMed
24.
go back to reference Haidar SG, Culliford DJ, Gent ED, Clarke NMP. Distance from the growth plate and Its relation to the outcome of unicameral bone cyst treatment. J Child Orthop. 2011;5:151–6.CrossRefPubMedPubMedCentral Haidar SG, Culliford DJ, Gent ED, Clarke NMP. Distance from the growth plate and Its relation to the outcome of unicameral bone cyst treatment. J Child Orthop. 2011;5:151–6.CrossRefPubMedPubMedCentral
25.
go back to reference Mascard E, Gomez-Brouchet A, Lambot K. Bone cysts: unicameral and aneurysmal bone cyst. Orthop Traumatol Surg Res. 2015;101:S119–127.CrossRefPubMed Mascard E, Gomez-Brouchet A, Lambot K. Bone cysts: unicameral and aneurysmal bone cyst. Orthop Traumatol Surg Res. 2015;101:S119–127.CrossRefPubMed
26.
go back to reference Kushchayeva YS, Kushchayev SV, Glushko TY, Tella SH, Teytelboym OM, Collins MT, et al. Fibrous dysplasia for radiologists: beyond ground glass bone matrix. Insights Imaging. 2018;9:1035–56.CrossRefPubMedPubMedCentral Kushchayeva YS, Kushchayev SV, Glushko TY, Tella SH, Teytelboym OM, Collins MT, et al. Fibrous dysplasia for radiologists: beyond ground glass bone matrix. Insights Imaging. 2018;9:1035–56.CrossRefPubMedPubMedCentral
27.
go back to reference Harris WH, Dudley HR, Barry RJ. The natural history of fibrous dysplasia. An orthopaedic, pathological, and roentgenographic study. J Bone Joint Surg Am. 1962;44-A:207–33. Harris WH, Dudley HR, Barry RJ. The natural history of fibrous dysplasia. An orthopaedic, pathological, and roentgenographic study. J Bone Joint Surg Am. 1962;44-A:207–33.
29.
go back to reference Kuznetsov SA, Cherman N, Riminucci M, Collins MT, Robey PG, Bianco P. Age-dependent demise of GNAS-mutated skeletal stem cells and “normalization” of fibrous dysplasia of bone. J Bone Miner Res. 2008;23:1731–40.CrossRefPubMedPubMedCentral Kuznetsov SA, Cherman N, Riminucci M, Collins MT, Robey PG, Bianco P. Age-dependent demise of GNAS-mutated skeletal stem cells and “normalization” of fibrous dysplasia of bone. J Bone Miner Res. 2008;23:1731–40.CrossRefPubMedPubMedCentral
30.
go back to reference Burke AB, Collins MT, Boyce AM. Fibrous dysplasia of bone: craniofacial and dental implications. Oral Dis. 2017;23:697–708.CrossRefPubMed Burke AB, Collins MT, Boyce AM. Fibrous dysplasia of bone: craniofacial and dental implications. Oral Dis. 2017;23:697–708.CrossRefPubMed
31.
go back to reference Javaid MK, Boyce A, Appelman-Dijkstra N, Ong J, Defabianis P, Offiah A, et al. Best practice management guidelines for fibrous dysplasia/McCune-Albright syndrome: a consensus statement from the FD/MAS international consortium. Orphanet J Rare Dis. 2019;14:139.CrossRefPubMedPubMedCentral Javaid MK, Boyce A, Appelman-Dijkstra N, Ong J, Defabianis P, Offiah A, et al. Best practice management guidelines for fibrous dysplasia/McCune-Albright syndrome: a consensus statement from the FD/MAS international consortium. Orphanet J Rare Dis. 2019;14:139.CrossRefPubMedPubMedCentral
32.
go back to reference Jee WH, Choe BY, Kang HS, Suh KJ, Suh JS, Ryu KN, et al. Nonossifying fibroma: characteristics at MR imaging with pathologic correlation. Radiology. 1998;209:197–202.CrossRefPubMed Jee WH, Choe BY, Kang HS, Suh KJ, Suh JS, Ryu KN, et al. Nonossifying fibroma: characteristics at MR imaging with pathologic correlation. Radiology. 1998;209:197–202.CrossRefPubMed
33.
go back to reference Samet J, Weinstein J, Fayad LM. MRI and clinical features of Langerhans cell histiocytosis (LCH) in the pelvis and extremities: can LCH really look like anything? Skeletal Radiol. 2016;45:607–13.CrossRefPubMed Samet J, Weinstein J, Fayad LM. MRI and clinical features of Langerhans cell histiocytosis (LCH) in the pelvis and extremities: can LCH really look like anything? Skeletal Radiol. 2016;45:607–13.CrossRefPubMed
34.
go back to reference Singh J, Rajakulasingam R, Saifuddin A. Langerhans cell histiocytosis of the shoulder girdle, pelvis and extremities: a review of radiographic and MRI features in 85 cases. Skeletal Radiol. 2020;49:1925–37.CrossRefPubMed Singh J, Rajakulasingam R, Saifuddin A. Langerhans cell histiocytosis of the shoulder girdle, pelvis and extremities: a review of radiographic and MRI features in 85 cases. Skeletal Radiol. 2020;49:1925–37.CrossRefPubMed
35.
go back to reference Nagy A, Somers GR. Round cell sarcomas: newcomers and diagnostic approaches. Surg Pathol Clin. 2020;13:763–82.CrossRefPubMed Nagy A, Somers GR. Round cell sarcomas: newcomers and diagnostic approaches. Surg Pathol Clin. 2020;13:763–82.CrossRefPubMed
36.
go back to reference Davis JL, Rudzinski ER. Small round blue cell sarcoma other than ewing sarcoma: what should an oncologist know? Curr Treat Options Oncol. 2020;21:90.CrossRefPubMed Davis JL, Rudzinski ER. Small round blue cell sarcoma other than ewing sarcoma: what should an oncologist know? Curr Treat Options Oncol. 2020;21:90.CrossRefPubMed
37.
go back to reference Sbaraglia M, Righi A, Gambarotti M, Dei Tos AP. Ewing sarcoma and Ewing-like tumors. Virchows Arch. 2020;476:109–19.CrossRefPubMed Sbaraglia M, Righi A, Gambarotti M, Dei Tos AP. Ewing sarcoma and Ewing-like tumors. Virchows Arch. 2020;476:109–19.CrossRefPubMed
38.
go back to reference Tsuda Y, Zhang L, Meyers P, Tap WD, Healey JH, Antonescu CR. The clinical heterogeneity of round cell sarcomas with EWSR1/FUS gene fusions: impact of gene fusion type on clinical features and outcome. Genes Chromosomes Cancer. 2020;59:525–34.CrossRefPubMedPubMedCentral Tsuda Y, Zhang L, Meyers P, Tap WD, Healey JH, Antonescu CR. The clinical heterogeneity of round cell sarcomas with EWSR1/FUS gene fusions: impact of gene fusion type on clinical features and outcome. Genes Chromosomes Cancer. 2020;59:525–34.CrossRefPubMedPubMedCentral
40.
go back to reference Kimbara S, Imamura Y, Kiyota N, Takakura H, Matsumoto S, Koyama T, et al. Secondary CIC-rearranged sarcoma responsive to chemotherapy regimens for Ewing sarcoma: a case report. Mol Clin Oncol. 2021;14:68.CrossRefPubMedPubMedCentral Kimbara S, Imamura Y, Kiyota N, Takakura H, Matsumoto S, Koyama T, et al. Secondary CIC-rearranged sarcoma responsive to chemotherapy regimens for Ewing sarcoma: a case report. Mol Clin Oncol. 2021;14:68.CrossRefPubMedPubMedCentral
41.
go back to reference Brady EJ, Hameed M, Tap WD, Hwang S. Imaging features and clinical course of undifferentiated round cell sarcomas with CIC-DUX4 and BCOR-CCNB3 translocations. Skeletal Radiol. 2021;50:521–9.CrossRefPubMed Brady EJ, Hameed M, Tap WD, Hwang S. Imaging features and clinical course of undifferentiated round cell sarcomas with CIC-DUX4 and BCOR-CCNB3 translocations. Skeletal Radiol. 2021;50:521–9.CrossRefPubMed
42.
go back to reference Sirisena UDN, Rajakulasingam R, Saifuddin A. Imaging of bone and soft tissue BCOR-rearranged sarcoma. Skeletal Radiol. 2021;50:1291–301.CrossRefPubMed Sirisena UDN, Rajakulasingam R, Saifuddin A. Imaging of bone and soft tissue BCOR-rearranged sarcoma. Skeletal Radiol. 2021;50:1291–301.CrossRefPubMed
43.
go back to reference Murphey MD, Senchak LT, Mambalam PK, Logie CI, Klassen-Fischer MK, Kransdorf MJ. From the radiologic pathology archives: Ewing sarcoma family of tumors: radiologic-pathologic correlation. Radiographics. 2013;33:803–31.CrossRefPubMed Murphey MD, Senchak LT, Mambalam PK, Logie CI, Klassen-Fischer MK, Kransdorf MJ. From the radiologic pathology archives: Ewing sarcoma family of tumors: radiologic-pathologic correlation. Radiographics. 2013;33:803–31.CrossRefPubMed
45.
go back to reference Zöllner SK, Amatruda JF, Bauer S, Collaud S, de Álava E, DuBois SG, et al. Ewing Sarcoma-diagnosis, treatment, clinical challenges and future perspectives. J Clin Med. 2021;10:1685.CrossRefPubMedPubMedCentral Zöllner SK, Amatruda JF, Bauer S, Collaud S, de Álava E, DuBois SG, et al. Ewing Sarcoma-diagnosis, treatment, clinical challenges and future perspectives. J Clin Med. 2021;10:1685.CrossRefPubMedPubMedCentral
46.
go back to reference Diaz-Perez JA, Nielsen GP, Antonescu C, Taylor MS, Lozano-Calderon SA, Rosenberg AE. EWSR1/FUS-NFATc2 rearranged round cell sarcoma: clinicopathological series of 4 cases and literature review. Hum Pathol. 2019;90:45–53.CrossRefPubMedPubMedCentral Diaz-Perez JA, Nielsen GP, Antonescu C, Taylor MS, Lozano-Calderon SA, Rosenberg AE. EWSR1/FUS-NFATc2 rearranged round cell sarcoma: clinicopathological series of 4 cases and literature review. Hum Pathol. 2019;90:45–53.CrossRefPubMedPubMedCentral
47.
go back to reference Antonescu CR, Kao Y-C, Xu B, Fujisawa Y, Chung C, Fletcher CDM, et al. Undifferentiated round cell sarcoma with BCOR internal tandem duplications (ITD) or YWHAE fusions: a clinicopathologic and molecular study. Mod Pathol. 2020;33:1669–77.CrossRefPubMedPubMedCentral Antonescu CR, Kao Y-C, Xu B, Fujisawa Y, Chung C, Fletcher CDM, et al. Undifferentiated round cell sarcoma with BCOR internal tandem duplications (ITD) or YWHAE fusions: a clinicopathologic and molecular study. Mod Pathol. 2020;33:1669–77.CrossRefPubMedPubMedCentral
48.
go back to reference Kyriazoglou A, Tourkantoni N, Liontos M, Zagouri F, Mahaira L, Papakosta A, et al. A case series of BCOR sarcomas with a new splice variant of BCOR/CCNB3 fusion gene. In Vivo. 2020;34:2947–54.CrossRefPubMedPubMedCentral Kyriazoglou A, Tourkantoni N, Liontos M, Zagouri F, Mahaira L, Papakosta A, et al. A case series of BCOR sarcomas with a new splice variant of BCOR/CCNB3 fusion gene. In Vivo. 2020;34:2947–54.CrossRefPubMedPubMedCentral
Metadata
Title
Update of pediatric bone tumors—other mesenchymal tumors of bone, hematopoietic neoplasms of bone, and WHO classification of undifferentiated small round cell sarcomas of bone
Authors
Annie Wang
Ezekiel Maloney
Khalid Al-Dasuqi
Lina Irshaid
Atif Ahmed
Andrew Haims
Jack Porrino
Publication date
19-01-2023
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 8/2023
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-023-04286-8

Other articles of this Issue 8/2023

Skeletal Radiology 8/2023 Go to the issue

Test Yourself: Question

Neck pain in a teenager