Skip to main content
Top
Published in: Pediatric Radiology 11/2011

01-11-2011 | Original Article

Labeling human embryonic stem-cell-derived cardiomyocytes for tracking with MR imaging

Authors: Rosalinda T. Castaneda, Sophie Boddington, Tobias D. Henning, Mike Wendland, Lydia Mandrussow, Siyuan Liu, Heike Daldrup-Link

Published in: Pediatric Radiology | Issue 11/2011

Login to get access

Abstract

Background

Human embryonic stem cells (hESC) can generate cardiomyocytes (CM), which offer promising treatments for cardiomyopathies in children. However, challenges for clinical translation result from loss of transplanted cell from target sites and high cell death. An imaging technique that noninvasively and repetitively monitors transplanted hESC-CM could guide improvements in transplantation techniques and advance therapies.

Objective

To develop a clinically applicable labeling technique for hESC-CM with FDA-approved superparamagnetic iron oxide nanoparticles (SPIO) by examining labeling before and after CM differentiation.

Materials and methods

Triplicates of hESC were labeled by simple incubation with 50 μg/ml of ferumoxides before or after differentiation into CM, then imaged on a 7T MR scanner using a T2-weighted multi-echo spin-echo sequence. Viability, iron uptake and T2-relaxation times were compared between groups using t-tests.

Results

hESC-CM labeled before differentiation demonstrated significant MR effects, iron uptake and preserved function. hESC-CM labeled after differentiation showed no significant iron uptake or change in MR signal (P < 0.05). Morphology, differentiation and viability were consistent between experimental groups.

Conclusion

hESC-CM should be labeled prior to CM differentiation to achieve a significant MR signal. This technique permits monitoring delivery and engraftment of hESC-CM for potential advancements of stem cell-based therapies in the reconstitution of damaged myocardium.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lipshultz SE, Sleeper LA, Towbin JA et al (2003) The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med 348:1647–1655PubMedCrossRef Lipshultz SE, Sleeper LA, Towbin JA et al (2003) The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med 348:1647–1655PubMedCrossRef
2.
go back to reference Rosamond W, Flegal K, Friday G et al (2007) Heart disease and stroke statistics—2007 update: a report from the American heart association statistics committee and stroke statistics subcommittee. Circulation 115:e-69–e-171CrossRef Rosamond W, Flegal K, Friday G et al (2007) Heart disease and stroke statistics—2007 update: a report from the American heart association statistics committee and stroke statistics subcommittee. Circulation 115:e-69–e-171CrossRef
3.
go back to reference Bettiol E, Clement S, Krause KH et al (2006) Embryonic and adult stem cell-derived cardiomyocytes: lessons from in vitro models. Rev Physiol Biochem Pharmacol 157:1–30PubMed Bettiol E, Clement S, Krause KH et al (2006) Embryonic and adult stem cell-derived cardiomyocytes: lessons from in vitro models. Rev Physiol Biochem Pharmacol 157:1–30PubMed
4.
go back to reference Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infracted rat hearts. Nat Biotechnol 25:1015–1024PubMedCrossRef Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infracted rat hearts. Nat Biotechnol 25:1015–1024PubMedCrossRef
5.
go back to reference Yamada S, Nelson TJ, Crespo-Diaz RJ et al (2008) Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Stem Cells 26:2644–2653PubMedCrossRef Yamada S, Nelson TJ, Crespo-Diaz RJ et al (2008) Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Stem Cells 26:2644–2653PubMedCrossRef
6.
go back to reference van Laake LW, Passier R, Doevendans PA et al (2008) Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res 102:1008–1010PubMedCrossRef van Laake LW, Passier R, Doevendans PA et al (2008) Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res 102:1008–1010PubMedCrossRef
7.
go back to reference Oyamada N, Itoh H, Sone M et al (2008) Transplantation of vascular cells derived from human embryonic stem cells contributes to vascular regeneration after stroke in mice. J Transl Med 6:54PubMedCrossRef Oyamada N, Itoh H, Sone M et al (2008) Transplantation of vascular cells derived from human embryonic stem cells contributes to vascular regeneration after stroke in mice. J Transl Med 6:54PubMedCrossRef
8.
go back to reference Au KW, Liao SY, Lee YK et al (2009) Effects of iron oxide nanoparticles on cardiac differentiation of embryonic stem cells. Biochem Biophys Res Commun 379:898–903PubMedCrossRef Au KW, Liao SY, Lee YK et al (2009) Effects of iron oxide nanoparticles on cardiac differentiation of embryonic stem cells. Biochem Biophys Res Commun 379:898–903PubMedCrossRef
9.
go back to reference Fraidenraich D, Benezra R (2006) Embryonic stem cells prevent developmental cardiac defects in mice. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S14–S17PubMedCrossRef Fraidenraich D, Benezra R (2006) Embryonic stem cells prevent developmental cardiac defects in mice. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S14–S17PubMedCrossRef
10.
go back to reference Martens TP, Godier AF, Parks JJ et al (2009) Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant 18:297–304PubMedCrossRef Martens TP, Godier AF, Parks JJ et al (2009) Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant 18:297–304PubMedCrossRef
11.
go back to reference Cao F, Wagner RA, Wilson KD et al (2008) Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS ONE 3:e3474PubMedCrossRef Cao F, Wagner RA, Wilson KD et al (2008) Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS ONE 3:e3474PubMedCrossRef
12.
go back to reference Li SH, Lai TY, Sun Z et al (2009) Tracking cardiac engraftment and distribution of implanted bone marrow cells: comparing intra-aortic, intravenous, and intramyocardial delivery. J Thorac Cardiovasc Surg 137(1225–1233):e1221 Li SH, Lai TY, Sun Z et al (2009) Tracking cardiac engraftment and distribution of implanted bone marrow cells: comparing intra-aortic, intravenous, and intramyocardial delivery. J Thorac Cardiovasc Surg 137(1225–1233):e1221
13.
go back to reference Cao F, Lin S, Xie X et al (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005–1014PubMedCrossRef Cao F, Lin S, Xie X et al (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005–1014PubMedCrossRef
14.
go back to reference Semont A, Francois S, Mouiseddine M et al (2006) Mesenchymal stem cells increase self-renewal of small intestinal epithelium and accelerate structural recovery after radiation injury. Adv Exp Med Biol 585:19–30PubMedCrossRef Semont A, Francois S, Mouiseddine M et al (2006) Mesenchymal stem cells increase self-renewal of small intestinal epithelium and accelerate structural recovery after radiation injury. Adv Exp Med Biol 585:19–30PubMedCrossRef
15.
go back to reference Lau JF, Anderson SA, Adler E et al (2010) Imaging approaches for the study of cell-based cardiac therapies. Nat Rev Cardiol 7:97–105PubMedCrossRef Lau JF, Anderson SA, Adler E et al (2010) Imaging approaches for the study of cell-based cardiac therapies. Nat Rev Cardiol 7:97–105PubMedCrossRef
16.
go back to reference Ye Y, Bogaert J (2008) Cell therapy in myocardial infarction: emphasis on the role of MRI. Eur Radiol 18:548–569PubMedCrossRef Ye Y, Bogaert J (2008) Cell therapy in myocardial infarction: emphasis on the role of MRI. Eur Radiol 18:548–569PubMedCrossRef
17.
go back to reference Nedopil A, Klenk C, Kim C et al (2010) MR signal characteristics of viable and apoptotic human mesenchymal stem cells in matrix-associated stem cell implants for treatment of osteoarthritis. Invest Radiol 45:634–640PubMedCrossRef Nedopil A, Klenk C, Kim C et al (2010) MR signal characteristics of viable and apoptotic human mesenchymal stem cells in matrix-associated stem cell implants for treatment of osteoarthritis. Invest Radiol 45:634–640PubMedCrossRef
18.
go back to reference Bratt-Leal AM, Carpenedo RL, McDevitt TC (2009) Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog 25:43–51PubMedCrossRef Bratt-Leal AM, Carpenedo RL, McDevitt TC (2009) Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog 25:43–51PubMedCrossRef
19.
go back to reference Maltsev VA, Wobus AM, Rohwedel J et al (1994) Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes to ionic currents. Circ Res 75:233–244PubMed Maltsev VA, Wobus AM, Rohwedel J et al (1994) Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes to ionic currents. Circ Res 75:233–244PubMed
20.
go back to reference Sykova E, Jendelova P (2007) Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ 14:1336–1342PubMedCrossRef Sykova E, Jendelova P (2007) Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ 14:1336–1342PubMedCrossRef
21.
go back to reference Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331PubMedCrossRef Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331PubMedCrossRef
22.
go back to reference Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674PubMedCrossRef Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674PubMedCrossRef
23.
go back to reference Metz S, Bonaterra G, Rudelius M et al (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858PubMedCrossRef Metz S, Bonaterra G, Rudelius M et al (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858PubMedCrossRef
24.
go back to reference Bulte JW, Ma LD, Magin RL et al (1993) Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magn Reson Med 29:32–37PubMedCrossRef Bulte JW, Ma LD, Magin RL et al (1993) Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magn Reson Med 29:32–37PubMedCrossRef
25.
go back to reference Schulze E, Ferrucci JT Jr, Poss K et al (1995) Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Invest Radiol 30:604–610PubMedCrossRef Schulze E, Ferrucci JT Jr, Poss K et al (1995) Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Invest Radiol 30:604–610PubMedCrossRef
27.
go back to reference Arbab AS, Yocum GT, Kalish H et al (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223PubMedCrossRef Arbab AS, Yocum GT, Kalish H et al (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223PubMedCrossRef
28.
go back to reference Kim HS, Oh SY, Joo HJ et al (2010) The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells. NMR Biomed 23:514–522PubMedCrossRef Kim HS, Oh SY, Joo HJ et al (2010) The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells. NMR Biomed 23:514–522PubMedCrossRef
29.
go back to reference Chung J, Yamada M, Yang PC (2009) Magnetic resonance imaging of human embryonic stem cells. Curr Protoc Stem Cell Biol Chapter 5:Unit 5A 3 Chung J, Yamada M, Yang PC (2009) Magnetic resonance imaging of human embryonic stem cells. Curr Protoc Stem Cell Biol Chapter 5:Unit 5A 3
30.
go back to reference Adler ED, Bystrup A, Briley-Saebo KC et al (2009) In vivo detection of embryonic stem cell-derived cardiovascular progenitor cells using Cy3-labeled Gadofluorine M in murine myocardium. JACC Cardiovasc Imaging 2:1114–1122PubMedCrossRef Adler ED, Bystrup A, Briley-Saebo KC et al (2009) In vivo detection of embryonic stem cell-derived cardiovascular progenitor cells using Cy3-labeled Gadofluorine M in murine myocardium. JACC Cardiovasc Imaging 2:1114–1122PubMedCrossRef
31.
go back to reference Josephson L, Tung CH, Moore A et al (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10:186–191PubMedCrossRef Josephson L, Tung CH, Moore A et al (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10:186–191PubMedCrossRef
32.
go back to reference Wang L, Wang Z, Frank TG et al (2009) Rapid and efficient cell labeling with a MRI contrast agent by electroporation in the presence of protamine sulfate. Nanomedicine (Lond) 4:305–315CrossRef Wang L, Wang Z, Frank TG et al (2009) Rapid and efficient cell labeling with a MRI contrast agent by electroporation in the presence of protamine sulfate. Nanomedicine (Lond) 4:305–315CrossRef
33.
go back to reference Bulte JW, Kraitchman DL, Mackay AM et al (2004) Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood 104:3410–3412, author reply 3412–3413PubMedCrossRef Bulte JW, Kraitchman DL, Mackay AM et al (2004) Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood 104:3410–3412, author reply 3412–3413PubMedCrossRef
34.
go back to reference Nohroudi K, Arnhold S, Berhorn T et al (2010) In vivo MRI stem cell tracking requires balancing of detection limit and cell viability. Cell Transplant 19:431–441PubMedCrossRef Nohroudi K, Arnhold S, Berhorn T et al (2010) In vivo MRI stem cell tracking requires balancing of detection limit and cell viability. Cell Transplant 19:431–441PubMedCrossRef
35.
go back to reference Lee JK, Lee MK, Jin HJ et al (2007) Efficient intracytoplasmic labeling of human umbilical cord blood mesenchymal stromal cells with ferumoxides. Cell Transplant 16:849–857PubMed Lee JK, Lee MK, Jin HJ et al (2007) Efficient intracytoplasmic labeling of human umbilical cord blood mesenchymal stromal cells with ferumoxides. Cell Transplant 16:849–857PubMed
36.
go back to reference Henning TD, Sutton EJ, Kim A et al (2009) The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells. Contrast Media Mol Imaging 4:165–173PubMedCrossRef Henning TD, Sutton EJ, Kim A et al (2009) The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells. Contrast Media Mol Imaging 4:165–173PubMedCrossRef
37.
go back to reference Henning TD, Boddington S, Daldrup-Link HE (2008) Labeling hESCs and hMSCs with iron oxide nanoparticles for non-invasive in vivo tracking with MR imaging. J Vis Exp 31:pii 685 Henning TD, Boddington S, Daldrup-Link HE (2008) Labeling hESCs and hMSCs with iron oxide nanoparticles for non-invasive in vivo tracking with MR imaging. J Vis Exp 31:pii 685
38.
go back to reference Maxwell DJ, Bonde J, Hess DA et al (2008) Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells. Stem Cells 26:517–524PubMedCrossRef Maxwell DJ, Bonde J, Hess DA et al (2008) Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells. Stem Cells 26:517–524PubMedCrossRef
39.
go back to reference Thu MS, Najbauer J, Kendall SE et al (2009) Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model. PLoS ONE 4:e7218PubMedCrossRef Thu MS, Najbauer J, Kendall SE et al (2009) Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model. PLoS ONE 4:e7218PubMedCrossRef
40.
go back to reference Tallheden T, Nannmark U, Lorentzon M et al (2006) In vivo MR imaging of magnetically labeled human embryonic stem cells. Life Sci 79:999–1006PubMedCrossRef Tallheden T, Nannmark U, Lorentzon M et al (2006) In vivo MR imaging of magnetically labeled human embryonic stem cells. Life Sci 79:999–1006PubMedCrossRef
41.
go back to reference Huang ZY, Ge JB, Yang S et al (2007) In vivo cardiac magnetic resonance imaging of superparamagnetic iron oxides-labeled mesenchymal stem cells in swines. Zhonghua Xin Xue Guan Bing Za Zhi 35:344–349PubMed Huang ZY, Ge JB, Yang S et al (2007) In vivo cardiac magnetic resonance imaging of superparamagnetic iron oxides-labeled mesenchymal stem cells in swines. Zhonghua Xin Xue Guan Bing Za Zhi 35:344–349PubMed
42.
go back to reference Hung TC, Suzuki Y, Urashima T et al (2008) Multimodality evaluation of the viability of stem cells delivered into different zones of myocardial infarction. Circ Cardiovasc Imaging 1:6–13PubMedCrossRef Hung TC, Suzuki Y, Urashima T et al (2008) Multimodality evaluation of the viability of stem cells delivered into different zones of myocardial infarction. Circ Cardiovasc Imaging 1:6–13PubMedCrossRef
43.
go back to reference Anisimov SV, Morizane A, Correia AS (2010) Risks and mechanisms of oncological disease following stem cell transplantation. Stem Cell Rev 6:411–424PubMedCrossRef Anisimov SV, Morizane A, Correia AS (2010) Risks and mechanisms of oncological disease following stem cell transplantation. Stem Cell Rev 6:411–424PubMedCrossRef
44.
go back to reference Hentze H, Soong PL, Wang ST et al (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2:198–210PubMedCrossRef Hentze H, Soong PL, Wang ST et al (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2:198–210PubMedCrossRef
45.
go back to reference Stuckey DJ, Carr CA, Martin-Rendon E et al (2006) Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells 24:1968–1975PubMedCrossRef Stuckey DJ, Carr CA, Martin-Rendon E et al (2006) Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells 24:1968–1975PubMedCrossRef
46.
go back to reference Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293PubMedCrossRef Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293PubMedCrossRef
47.
go back to reference Li Z, Suzuki Y, Huang M et al (2008) Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells 26:864–873PubMedCrossRef Li Z, Suzuki Y, Huang M et al (2008) Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells 26:864–873PubMedCrossRef
48.
go back to reference Crabbe A, Vandeputte C, Dresselaers T et al (2010) Effects of MRI contrast agents on the stem cell phenotype. Cell Transplant 19:919–936PubMedCrossRef Crabbe A, Vandeputte C, Dresselaers T et al (2010) Effects of MRI contrast agents on the stem cell phenotype. Cell Transplant 19:919–936PubMedCrossRef
49.
go back to reference Jendelova P, Herynek V, Urdzikova L et al (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76:232–243PubMedCrossRef Jendelova P, Herynek V, Urdzikova L et al (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76:232–243PubMedCrossRef
50.
go back to reference Mani V, Adler E, Briley-Saebo KC et al (2008) Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 60:73–81PubMedCrossRef Mani V, Adler E, Briley-Saebo KC et al (2008) Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 60:73–81PubMedCrossRef
51.
go back to reference Wang B, Jaconi M, Li J et al (2007) MR imaging of embryonic stem cells labeled by superparamagnetic iron oxide. Zhonghua Yi Xue Za Zhi 87:1646–1648PubMed Wang B, Jaconi M, Li J et al (2007) MR imaging of embryonic stem cells labeled by superparamagnetic iron oxide. Zhonghua Yi Xue Za Zhi 87:1646–1648PubMed
52.
go back to reference Kalish H, Arbab AS, Miller BR et al (2003) Combination of transfection agents and magnetic resonance contrast agents for cellular imaging: relationship between relaxivities, electrostatic forces, and chemical composition. Magn Reson Med 50:275–282PubMedCrossRef Kalish H, Arbab AS, Miller BR et al (2003) Combination of transfection agents and magnetic resonance contrast agents for cellular imaging: relationship between relaxivities, electrostatic forces, and chemical composition. Magn Reson Med 50:275–282PubMedCrossRef
53.
go back to reference Charriere GM, Cousin B, Arnaud E et al (2006) Macrophage characteristics of stem cells revealed by transcriptome profiling. Exp Cell Res 312:3205–3214PubMedCrossRef Charriere GM, Cousin B, Arnaud E et al (2006) Macrophage characteristics of stem cells revealed by transcriptome profiling. Exp Cell Res 312:3205–3214PubMedCrossRef
54.
go back to reference Terrovitis J, Stuber M, Youssef A et al (2008) Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 117:1555–1562PubMedCrossRef Terrovitis J, Stuber M, Youssef A et al (2008) Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 117:1555–1562PubMedCrossRef
55.
go back to reference Amsalem Y, Mardor Y, Feinberg MS et al (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infracted myocardium. Circulation 116:I38–I45PubMedCrossRef Amsalem Y, Mardor Y, Feinberg MS et al (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infracted myocardium. Circulation 116:I38–I45PubMedCrossRef
56.
go back to reference Pawelczyk E, Jordan EK, Balakumaran A et al (2009) In vivo transfer of intracellular labels from locally implanted bone marrow stromal cells to resident tissue macrophages. PLoS ONE 4:e6712PubMedCrossRef Pawelczyk E, Jordan EK, Balakumaran A et al (2009) In vivo transfer of intracellular labels from locally implanted bone marrow stromal cells to resident tissue macrophages. PLoS ONE 4:e6712PubMedCrossRef
57.
go back to reference Berman SC, Galpoththawela C, Gilad AA et al (2011) Long-term MR cell tracking of neural stem cells grafted in immunocompetent versus immunodeficient mice reveals distinct differences in contrast between live and dead cells. Magn Reson Med 65:564–574PubMedCrossRef Berman SC, Galpoththawela C, Gilad AA et al (2011) Long-term MR cell tracking of neural stem cells grafted in immunocompetent versus immunodeficient mice reveals distinct differences in contrast between live and dead cells. Magn Reson Med 65:564–574PubMedCrossRef
58.
go back to reference Yamada T, Yoshikawa M, Kanda S et al (2002) In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells 20:146–154PubMedCrossRef Yamada T, Yoshikawa M, Kanda S et al (2002) In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells 20:146–154PubMedCrossRef
59.
go back to reference Lei Y, Tang H, Feng M et al (2009) Applications of fluorescent quantum dots to stem cell tracing in vivo. J Nanosci Nanotechnol 9:5726–5730PubMedCrossRef Lei Y, Tang H, Feng M et al (2009) Applications of fluorescent quantum dots to stem cell tracing in vivo. J Nanosci Nanotechnol 9:5726–5730PubMedCrossRef
60.
go back to reference Boddington SE, Henning TD, Jha P et al (2010) Labeling human embryonic stem cell-derived cardiomyocytes with indocyanine green for noninvasive tracking with optical imaging: an FDA-compatible alternative to firefly luciferase. Cell Transplant 19:55–65PubMedCrossRef Boddington SE, Henning TD, Jha P et al (2010) Labeling human embryonic stem cell-derived cardiomyocytes with indocyanine green for noninvasive tracking with optical imaging: an FDA-compatible alternative to firefly luciferase. Cell Transplant 19:55–65PubMedCrossRef
61.
go back to reference Terrovitis J, Lautamaki R, Bonios M et al (2009) Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J Am Coll Cardiol 54:1619–1626PubMedCrossRef Terrovitis J, Lautamaki R, Bonios M et al (2009) Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J Am Coll Cardiol 54:1619–1626PubMedCrossRef
62.
go back to reference Qiao H, Zhang H, Zheng Y et al (2009) Embryonic stem cell grafting in normal and infracted myocardium: serial assessment with MR imaging and PET dual detection. Radiology 250:821–829PubMedCrossRef Qiao H, Zhang H, Zheng Y et al (2009) Embryonic stem cell grafting in normal and infracted myocardium: serial assessment with MR imaging and PET dual detection. Radiology 250:821–829PubMedCrossRef
63.
go back to reference Zhang Y, Ruel M, Beanlands RS et al (2008) Tracking stem cell therapy in the myocardium: applications of positron emission tomography. Curr Pharm Des 14:3835–3853PubMedCrossRef Zhang Y, Ruel M, Beanlands RS et al (2008) Tracking stem cell therapy in the myocardium: applications of positron emission tomography. Curr Pharm Des 14:3835–3853PubMedCrossRef
64.
go back to reference Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRef Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRef
Metadata
Title
Labeling human embryonic stem-cell-derived cardiomyocytes for tracking with MR imaging
Authors
Rosalinda T. Castaneda
Sophie Boddington
Tobias D. Henning
Mike Wendland
Lydia Mandrussow
Siyuan Liu
Heike Daldrup-Link
Publication date
01-11-2011
Publisher
Springer-Verlag
Published in
Pediatric Radiology / Issue 11/2011
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-011-2130-3

Other articles of this Issue 11/2011

Pediatric Radiology 11/2011 Go to the issue