Skip to main content
Top
Published in: Brain Structure and Function 2/2019

01-03-2019 | Original Article

Knockdown of calcium-binding calb2a and calb2b genes indicates the key regulator of the early development of the zebrafish, Danio rerio

Authors: Rahul C. Bhoyar, Arun G. Jadhao, Ankit Sabharwal, Gyan Ranjan, Sridhar Sivasubbu, Claudia Pinelli

Published in: Brain Structure and Function | Issue 2/2019

Login to get access

Abstract

The present study initiates our investigation regarding the role of calb2a and calb2b genes that are expressed in the central nervous system, including the multiple tissues during early embryonic development of zebrafish. In this study, we have adopted individual and combined morpholino-mediated inactivation approach to investigate the functions of calb2a and calb2b in early development of the zebrafish. We have found that calb2a and calb2b morpholino alone failed to generate an obvious phenotype; however, morphological inspection in early developmental stages of calb2a and calb2b combined knockdown morphants show abnormal neural plate folding in midbrain-hindbrain region. In addition to this, combinatorial loss of these mRNA leads to severe hydrocephalus, axial curvature defect, and yolk sac edema in later developmental stages. Also, the combined knockdown of calb2a and calb2b are found to be associated with an impaired touchdown and swimming performance in the zebrafish. Co-injection of the calb2a and calb2b morpholino oligonucleotide cocktail with human CALB2 mRNA leads to the rescue of the strong phenotype. This study provided the first comprehensive analyses of the zebrafish Calb2a and Calb2b proteins; we have found that Calb2a and Calb2b are highly conserved across vertebrate species and originated from the same ancestral gene long back in the evolution. Homology modeling and docking with the similar structure and Ca2+ binding sites for both proteins provide the evidence that both the proteins may have similar function and one can compensate for the loss of other. Collectively, these findings confirm the unique and essential functions of calb2a and calb2b genes in the early development of the zebrafish.
Appendix
Available only for authorised users
Literature
go back to reference Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M (1997) Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl AcadSci USA 94:1488–1493CrossRef Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M (1997) Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl AcadSci USA 94:1488–1493CrossRef
go back to reference Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentral Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentral
go back to reference Amores A et al (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714CrossRefPubMed Amores A et al (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714CrossRefPubMed
go back to reference Andressen C, Blümcke I, Celio M (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 271:181–208CrossRefPubMed Andressen C, Blümcke I, Celio M (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 271:181–208CrossRefPubMed
go back to reference Arendt O, Schwaller B, Brown EB, Eilers J, Schmidt H (2013) Restricted diffusion of calretinin in cerebellar granule cell dendrites implies Ca2+-dependent interactions via its EF-hand 5 domain. J Physiol 591:3887–3899CrossRefPubMedPubMedCentral Arendt O, Schwaller B, Brown EB, Eilers J, Schmidt H (2013) Restricted diffusion of calretinin in cerebellar granule cell dendrites implies Ca2+-dependent interactions via its EF-hand 5 domain. J Physiol 591:3887–3899CrossRefPubMedPubMedCentral
go back to reference Baimbridge K, Miller J (1982) Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat. Brain Res 245:223–229CrossRefPubMed Baimbridge K, Miller J (1982) Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat. Brain Res 245:223–229CrossRefPubMed
go back to reference Baimbridge K, Celio M, Rogers J (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308CrossRefPubMed Baimbridge K, Celio M, Rogers J (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308CrossRefPubMed
go back to reference Bang P, Yelick P, Malicki J, Sewell W (2002) High-throughput behavioral screening method for detecting auditory response defects in zebrafish. J Neurosci Methods 118:177–187CrossRefPubMed Bang P, Yelick P, Malicki J, Sewell W (2002) High-throughput behavioral screening method for detecting auditory response defects in zebrafish. J Neurosci Methods 118:177–187CrossRefPubMed
go back to reference Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71:261–277CrossRefPubMed Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71:261–277CrossRefPubMed
go back to reference Berdal A et al (1991) Differential expression of calbindin-D 28 kDa in rat incisor ameloblasts throughout enamel development. Anat Rec 230:149–163CrossRefPubMed Berdal A et al (1991) Differential expression of calbindin-D 28 kDa in rat incisor ameloblasts throughout enamel development. Anat Rec 230:149–163CrossRefPubMed
go back to reference Bhoyar RC, Jadhao AG, Sivasubbu S, Singh AR, Sabharwal A, Palande NV, Biswas S (2017) Neuroanatomical demonstration of calbindin 2a- and calbindin 2b-like calcium binding proteins in the early embryonic development of zebrafish: mRNA study. Int J Dev Neurosci 60:26–33CrossRefPubMed Bhoyar RC, Jadhao AG, Sivasubbu S, Singh AR, Sabharwal A, Palande NV, Biswas S (2017) Neuroanatomical demonstration of calbindin 2a- and calbindin 2b-like calcium binding proteins in the early embryonic development of zebrafish: mRNA study. Int J Dev Neurosci 60:26–33CrossRefPubMed
go back to reference Brand M et al (1996) Mutations affecting development of the midline and general body shape during zebrafish embryogenesis. Development 123:129–142PubMed Brand M et al (1996) Mutations affecting development of the midline and general body shape during zebrafish embryogenesis. Development 123:129–142PubMed
go back to reference Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE (1995) A behavioural screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci USA 92:10545–10549CrossRefPubMedPubMedCentral Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE (1995) A behavioural screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci USA 92:10545–10549CrossRefPubMedPubMedCentral
go back to reference Bronner F (1990) Intestinal calcium transport: the cellular pathway. Miner Electrolyte Metab 16:94–100PubMed Bronner F (1990) Intestinal calcium transport: the cellular pathway. Miner Electrolyte Metab 16:94–100PubMed
go back to reference Brown NP, Leroy C, Sander C (1998) MView: a web-compatible database search or multiple alignment viewer. Bioinformatics 14.4:380–381CrossRef Brown NP, Leroy C, Sander C (1998) MView: a web-compatible database search or multiple alignment viewer. Bioinformatics 14.4:380–381CrossRef
go back to reference Budick S, O’Malley D (2000) Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J ExpBiol 203:2565–2579 Budick S, O’Malley D (2000) Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J ExpBiol 203:2565–2579
go back to reference Cao Y, Park A, Sun Z (2010) Intraflagellar transport proteins are essential for cilia formation and for planar cell polarity. J Am Soc Nephrol 21:1326–1333CrossRefPubMedPubMedCentral Cao Y, Park A, Sun Z (2010) Intraflagellar transport proteins are essential for cilia formation and for planar cell polarity. J Am Soc Nephrol 21:1326–1333CrossRefPubMedPubMedCentral
go back to reference Castro A, Becerra M, Manso MJ, Anadón R (2006) Calretinin immunoreactivity in the brain of the zebrafish. Danio rerio: distribution and comparison with some neuropeptides and neurotransmitter-synthesizing enzymes. II. Midbrain, hindbrain, and rostral spinal cord. J Comp Neurol 494:792–814CrossRefPubMed Castro A, Becerra M, Manso MJ, Anadón R (2006) Calretinin immunoreactivity in the brain of the zebrafish. Danio rerio: distribution and comparison with some neuropeptides and neurotransmitter-synthesizing enzymes. II. Midbrain, hindbrain, and rostral spinal cord. J Comp Neurol 494:792–814CrossRefPubMed
go back to reference Chard P, Bleakman D, Christakos S, Fullmer C, Miller R (1993) Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurons. J Physiol 472:341–357CrossRefPubMedPubMedCentral Chard P, Bleakman D, Christakos S, Fullmer C, Miller R (1993) Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurons. J Physiol 472:341–357CrossRefPubMedPubMedCentral
go back to reference Christakos S, Friedlander E, Frandsen B, Norman (1979) A Studies on the mode of action of calciferol. XIII. Development of a radioimmunoassay for vitamin D-dependent chick intestinal calcium-binding protein and tissue distribution. J Endocrinol 104:1495–1503CrossRef Christakos S, Friedlander E, Frandsen B, Norman (1979) A Studies on the mode of action of calciferol. XIII. Development of a radioimmunoassay for vitamin D-dependent chick intestinal calcium-binding protein and tissue distribution. J Endocrinol 104:1495–1503CrossRef
go back to reference Deshpande K, Jadhao A (2015) Calcium binding protein calretinin (29kD) localization in the forebrain of the cichlid fish: an immunohistochemical study. Gen Comp Endocrinol 220:93–97CrossRefPubMed Deshpande K, Jadhao A (2015) Calcium binding protein calretinin (29kD) localization in the forebrain of the cichlid fish: an immunohistochemical study. Gen Comp Endocrinol 220:93–97CrossRefPubMed
go back to reference Drummond I et al (1998) Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125:4655–4667PubMed Drummond I et al (1998) Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125:4655–4667PubMed
go back to reference Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost HJ (2005) Kupffers vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132:1247–1260CrossRefPubMed Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost HJ (2005) Kupffers vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132:1247–1260CrossRefPubMed
go back to reference Heizmann C, Hunzlker W (1991) Intracellular calcium-binding proteins: more sites than insights. Trends Biochem Sci 16:98–103CrossRefPubMed Heizmann C, Hunzlker W (1991) Intracellular calcium-binding proteins: more sites than insights. Trends Biochem Sci 16:98–103CrossRefPubMed
go back to reference Hermanson S, Davidson AE, Sivasubbu S, Balciunas D, Ekker SC (2004) Sleeping beauty transposon for efficient gene delivery. Methods Cell Biol 349–362 Hermanson S, Davidson AE, Sivasubbu S, Balciunas D, Ekker SC (2004) Sleeping beauty transposon for efficient gene delivery. Methods Cell Biol 349–362
go back to reference Hyatt T, Ekker S (1999) Vectors and techniques for ectopic gene expression in zebrafish. Methods Cell Biol 59:117–126CrossRefPubMed Hyatt T, Ekker S (1999) Vectors and techniques for ectopic gene expression in zebrafish. Methods Cell Biol 59:117–126CrossRefPubMed
go back to reference Jadhao A, Deshpande K (2014) Sexually dimorphic distribution of calcium-binding protein, calretinin in the preoptic area of the freshwater catfish, Clarias batrachus. Neurosci Lett 579:86–91CrossRefPubMed Jadhao A, Deshpande K (2014) Sexually dimorphic distribution of calcium-binding protein, calretinin in the preoptic area of the freshwater catfish, Clarias batrachus. Neurosci Lett 579:86–91CrossRefPubMed
go back to reference Jadhao A, Malz C (2007) Localization of calcium binding protein (Calretinin, 29 kD) in the brain and pituitary gland of the teleost fish: an Immunohistochemical study. Neurosci Res 59:265–276CrossRefPubMed Jadhao A, Malz C (2007) Localization of calcium binding protein (Calretinin, 29 kD) in the brain and pituitary gland of the teleost fish: an Immunohistochemical study. Neurosci Res 59:265–276CrossRefPubMed
go back to reference Jaillon O et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957CrossRefPubMed Jaillon O et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957CrossRefPubMed
go back to reference Jande S, Maler L, Lawson D (1981a) Immunohistochemical mapping of vitamin D-dependent calcium binding protein in brain. Nature 294:765–767CrossRefPubMed Jande S, Maler L, Lawson D (1981a) Immunohistochemical mapping of vitamin D-dependent calcium binding protein in brain. Nature 294:765–767CrossRefPubMed
go back to reference Jande S, Toinal S, Lawson D (1981b) Immunohistochemical localization of vitamin D-dependent calcium-binding protein in duodenum, kidney, uterus and cerebellum of chickens. Histochemistry 71:99–116CrossRefPubMed Jande S, Toinal S, Lawson D (1981b) Immunohistochemical localization of vitamin D-dependent calcium-binding protein in duodenum, kidney, uterus and cerebellum of chickens. Histochemistry 71:99–116CrossRefPubMed
go back to reference Karlsson J, Von Hofsten J, Olsson P (2001) Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol 3:522–527CrossRef Karlsson J, Von Hofsten J, Olsson P (2001) Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol 3:522–527CrossRef
go back to reference Kimmel CB, Ballard W, Kimmel S, Ullmann B, Schilling T (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310CrossRefPubMed Kimmel CB, Ballard W, Kimmel S, Ullmann B, Schilling T (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310CrossRefPubMed
go back to reference Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132:1907–1921CrossRefPubMed Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132:1907–1921CrossRefPubMed
go back to reference Lan C, Laurenson S, Copp BR, Cattin PM, Love DR (2007) Whole organism approaches to chemical genomics: the promising role of zebrafish (Danio rerio). Expert Opin Drug Discov 2:1389–1401CrossRefPubMed Lan C, Laurenson S, Copp BR, Cattin PM, Love DR (2007) Whole organism approaches to chemical genomics: the promising role of zebrafish (Danio rerio). Expert Opin Drug Discov 2:1389–1401CrossRefPubMed
go back to reference Lee JE (1997) Basic helix–loop–helix genes in neural development. Curr Opin Neurobiol 7:13–20CrossRefPubMed Lee JE (1997) Basic helix–loop–helix genes in neural development. Curr Opin Neurobiol 7:13–20CrossRefPubMed
go back to reference Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:242–245CrossRef Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:242–245CrossRef
go back to reference Levanti MB, Montalbano G, Laurà R, Ciriaco E, Cobo T, García-Suarez O, Germanà A, Vega JA (2007) Calretinin in the peripheral nervous system of the adult zebrafish. J Anat 212:67–71CrossRef Levanti MB, Montalbano G, Laurà R, Ciriaco E, Cobo T, García-Suarez O, Germanà A, Vega JA (2007) Calretinin in the peripheral nervous system of the adult zebrafish. J Anat 212:67–71CrossRef
go back to reference Lin YF, Cheng CW, Shih CS, Hwang JK, Yu CS, Lu CH (2016) MIB: metal ion-binding site prediction and docking server. J Chem Inf Model 56(12):2287–2291CrossRefPubMed Lin YF, Cheng CW, Shih CS, Hwang JK, Yu CS, Lu CH (2016) MIB: metal ion-binding site prediction and docking server. J Chem Inf Model 56(12):2287–2291CrossRefPubMed
go back to reference Lledo PM, Somasundaram B, Morton AJ, Emson PC, Mason WT (1992) Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron 9:943–954CrossRefPubMed Lledo PM, Somasundaram B, Morton AJ, Emson PC, Mason WT (1992) Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron 9:943–954CrossRefPubMed
go back to reference Lovell S, Davis I, Arendall W, de Bakker P, Word J, Prisant M, Richardson J, Richardson D (2003) Structure validation by C-alphageometry: phi, psi and C-beta deviation. Proteins 50:437–450CrossRefPubMed Lovell S, Davis I, Arendall W, de Bakker P, Word J, Prisant M, Richardson J, Richardson D (2003) Structure validation by C-alphageometry: phi, psi and C-beta deviation. Proteins 50:437–450CrossRefPubMed
go back to reference Lun K, Brand MA (1998) Series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. Development 125:3049–3062PubMed Lun K, Brand MA (1998) Series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. Development 125:3049–3062PubMed
go back to reference Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 5:83–85CrossRef Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 5:83–85CrossRef
go back to reference Moews P, Kretsinger R (1975) Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. J Mol Biol 91:201–225CrossRefPubMed Moews P, Kretsinger R (1975) Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. J Mol Biol 91:201–225CrossRefPubMed
go back to reference Morcos P (2007) Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos. Biochem Biophys Res Commun 358:521–527CrossRefPubMed Morcos P (2007) Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos. Biochem Biophys Res Commun 358:521–527CrossRefPubMed
go back to reference Nasevicius A, Ekker S (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220CrossRefPubMed Nasevicius A, Ekker S (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220CrossRefPubMed
go back to reference Nemere I, Leathers V, Thompson B, Luben R, Norman A (1991) Redistribution of calbindin-D28k in chick intestine in response to calcium transport. ‎J Endocrinol 129:2972–2984CrossRef Nemere I, Leathers V, Thompson B, Luben R, Norman A (1991) Redistribution of calbindin-D28k in chick intestine in response to calcium transport. ‎J Endocrinol 129:2972–2984CrossRef
go back to reference Parmentier M, Passage E, Vassart G, Mattei MG (1991) The human calbindin D28k (CALB1) and calretinin (CALB2) genes are located at 8q21. 3 → q22.1 and 16q22 → q23, respectively, suggesting a common duplication with the carbonic anhydrase isozyme loci. Cytogenet Genome Res 57(1):41–43CrossRef Parmentier M, Passage E, Vassart G, Mattei MG (1991) The human calbindin D28k (CALB1) and calretinin (CALB2) genes are located at 8q21. 3 → q22.1 and 16q22 → q23, respectively, suggesting a common duplication with the carbonic anhydrase isozyme loci. Cytogenet Genome Res 57(1):41–43CrossRef
go back to reference Persechini A, Moncrief N, Kretsinger R (1989) The EF-hand family of calcium-modulated proteins. Trends Neurosci 12:462–467CrossRefPubMed Persechini A, Moncrief N, Kretsinger R (1989) The EF-hand family of calcium-modulated proteins. Trends Neurosci 12:462–467CrossRefPubMed
go back to reference Postlethwait J et al (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18:345–349CrossRefPubMed Postlethwait J et al (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18:345–349CrossRefPubMed
go back to reference Ravanelli A, Klingensmith J (2011) The actin nucleator Cordon-bleu is required for development of motile cilia in zebrafish. Dev Biol 350:101–111CrossRefPubMed Ravanelli A, Klingensmith J (2011) The actin nucleator Cordon-bleu is required for development of motile cilia in zebrafish. Dev Biol 350:101–111CrossRefPubMed
go back to reference Reifers F, Böhli H, Walsh EC, Crossley PH, Stainier DY, Brand M (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125:2381–2395PubMed Reifers F, Böhli H, Walsh EC, Crossley PH, Stainier DY, Brand M (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125:2381–2395PubMed
go back to reference Rogers J (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105:1343–1353CrossRefPubMed Rogers J (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105:1343–1353CrossRefPubMed
go back to reference Saint-Amant L, Drapeau P (1998) Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 37:622–632CrossRefPubMed Saint-Amant L, Drapeau P (1998) Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 37:622–632CrossRefPubMed
go back to reference Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539CrossRefPubMedPubMedCentral Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539CrossRefPubMedPubMedCentral
go back to reference Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489:141–158CrossRefPubMed Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489:141–158CrossRefPubMed
go back to reference Sun Z et al (2004a) A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131:4085–4093CrossRefPubMed Sun Z et al (2004a) A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131:4085–4093CrossRefPubMed
go back to reference Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N (2004b) A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131:4085–4093CrossRefPubMed Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N (2004b) A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131:4085–4093CrossRefPubMed
go back to reference Szklarczyk D et al (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:447–452CrossRef Szklarczyk D et al (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:447–452CrossRef
go back to reference UniProt Consortium (2016) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45.D1: D158–D169 UniProt Consortium (2016) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45.D1: D158–D169
go back to reference Wallace AC, Roman AL, Janet MT (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng Des Sel 8.2:127–134CrossRef Wallace AC, Roman AL, Janet MT (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng Des Sel 8.2:127–134CrossRef
go back to reference Webb B, Andrej S (2014) Protein structure modeling with MODELLER. Protein structure prediction. Humana Press, Totowa, pp 1–15 Webb B, Andrej S (2014) Protein structure modeling with MODELLER. Protein structure prediction. Humana Press, Totowa, pp 1–15
go back to reference Westerfield M (2000) The Zebrafish Book. A guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene Westerfield M (2000) The Zebrafish Book. A guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene
go back to reference Westerfield M (2007) The zebrafish Book: a guide for the laboratory use of zebrafish (Danio rerio). Printed by the University of Oregon Press, Eugene Westerfield M (2007) The zebrafish Book: a guide for the laboratory use of zebrafish (Danio rerio). Printed by the University of Oregon Press, Eugene
go back to reference Yang J, Roy A, Zhang Y (2013a) Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595CrossRefPubMedPubMedCentral Yang J, Roy A, Zhang Y (2013a) Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595CrossRefPubMedPubMedCentral
go back to reference Yang J, Roy A, Zhang Y (2013b) BioLiP: a semi-manually curated database for biologically relevant ligand–protein interactions. Nucleic Acids Res 41:1096–1103CrossRef Yang J, Roy A, Zhang Y (2013b) BioLiP: a semi-manually curated database for biologically relevant ligand–protein interactions. Nucleic Acids Res 41:1096–1103CrossRef
go back to reference Yokoi H, Yan YL, Miller MR, BreMiller RA, Catchen JM, Johnson EA, Postlethwait JH (2009) Expression profiling of zebrafish sox9 mutants reveals that Sox9 is required for retinal differentiation. Dev Biol 329:1–15CrossRefPubMedPubMedCentral Yokoi H, Yan YL, Miller MR, BreMiller RA, Catchen JM, Johnson EA, Postlethwait JH (2009) Expression profiling of zebrafish sox9 mutants reveals that Sox9 is required for retinal differentiation. Dev Biol 329:1–15CrossRefPubMedPubMedCentral
go back to reference Zündorf G, Georg R (2011) Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 14.7:1275–1288CrossRef Zündorf G, Georg R (2011) Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 14.7:1275–1288CrossRef
Metadata
Title
Knockdown of calcium-binding calb2a and calb2b genes indicates the key regulator of the early development of the zebrafish, Danio rerio
Authors
Rahul C. Bhoyar
Arun G. Jadhao
Ankit Sabharwal
Gyan Ranjan
Sridhar Sivasubbu
Claudia Pinelli
Publication date
01-03-2019
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 2/2019
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1797-8

Other articles of this Issue 2/2019

Brain Structure and Function 2/2019 Go to the issue