Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2008

Open Access 01-12-2008 | Research article

Kihi-to, a herbal traditional medicine, improves Abeta(25–35)-induced memory impairment and losses of neurites and synapses

Authors: Chihiro Tohda, Rie Naito, Eri Joyashiki

Published in: BMC Complementary Medicine and Therapies | Issue 1/2008

Login to get access

Abstract

Background

We previously hypothesized that achievement of recovery of brain function after the injury requires the reconstruction of neuronal networks, including neurite regeneration and synapse reformation. Kihi-to is composed of twelve crude drugs, some of which have already been shown to possess neurite extension properties in our previous studies. The effect of Kihi-to on memory deficit has not been examined. Thus, the goal of the present study is to determine the in vivo and in vitro effects of Kihi-to on memory, neurite growth and synapse reconstruction.

Methods

Effects of Kihi-to, a traditional Japanese-Chinese traditional medicine, on memory deficits and losses of neurites and synapses were examined using Alzheimer's disease model mice. Improvements of Aβ(25–35)-induced neuritic atrophy by Kihi-to and the mechanism were investigated in cultured cortical neurons.

Results

Administration of Kihi-to for consecutive 3 days resulted in marked improvements of Aβ(25–35)-induced impairments in memory acquisition, memory retention, and object recognition memory in mice. Immunohistochemical comparisons suggested that Kihi-to attenuated neuritic, synaptic and myelin losses in the cerebral cortex, hippocampus and striatum. Kihi-to also attenuated the calpain increase in the cerebral cortex and hippocampus. When Kihi-to was added to cells 4 days after Aβ(25–35) treatment, axonal and dendritic outgrowths in cultured cortical neurons were restored as demonstrated by extended lengths of phosphorylated neurofilament-H (P-NF-H) and microtubule-associated protein (MAP)2-positive neurites. Aβ(25–35)-induced cell death in cortical culture was also markedly inhibited by Kihi-to. Since NF-H, MAP2 and myelin basic protein (MBP) are substrates of calpain, and calpain is known to be involved in Aβ-induced axonal atrophy, expression levels of calpain and calpastatin were measured. Treatment with Kihi-to inhibited the Aβ(25–35)-evoked increase in the calpain level and decrease in the calpastatin level. In addition, Kihi-to inhibited Aβ(25–35)-induced calcium entry.

Conclusion

In conclusion Kihi-to clearly improved the memory impairment and losses of neurites and synapses.
Appendix
Available only for authorised users
Literature
1.
go back to reference DeKosky ST, Scheff SW: Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol. 1990, 27: 457-464. 10.1002/ana.410270502.CrossRefPubMed DeKosky ST, Scheff SW: Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol. 1990, 27: 457-464. 10.1002/ana.410270502.CrossRefPubMed
2.
go back to reference Dickson TC, Vickers JC: The morphological phenotype of β-amyloid plaques and associated neuritic changes in Alzheimer's disease. Neuroscience. 2001, 105: 99-107. 10.1016/S0306-4522(01)00169-5.CrossRefPubMed Dickson TC, Vickers JC: The morphological phenotype of β-amyloid plaques and associated neuritic changes in Alzheimer's disease. Neuroscience. 2001, 105: 99-107. 10.1016/S0306-4522(01)00169-5.CrossRefPubMed
3.
go back to reference Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R: Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991, 30: 572-580. 10.1002/ana.410300410.CrossRefPubMed Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R: Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991, 30: 572-580. 10.1002/ana.410300410.CrossRefPubMed
4.
go back to reference Tohda C, Kuboyama T, Komatsu K: Search for natural products related to regeneration of the neuronal network. Neurosignals. 2005, 14: 34-45. 10.1159/000085384.CrossRefPubMed Tohda C, Kuboyama T, Komatsu K: Search for natural products related to regeneration of the neuronal network. Neurosignals. 2005, 14: 34-45. 10.1159/000085384.CrossRefPubMed
5.
go back to reference Tohda C, Matsumoto N, Zou K, Meselhy MR, Komatsu K: Axonal and dendritic extension by protopanaxadiol-type saponins from ginseng drugs in SK-N-SH cells. Jpn J Pharmacol. 2002, 90: 254-262. 10.1254/jjp.90.254.CrossRefPubMed Tohda C, Matsumoto N, Zou K, Meselhy MR, Komatsu K: Axonal and dendritic extension by protopanaxadiol-type saponins from ginseng drugs in SK-N-SH cells. Jpn J Pharmacol. 2002, 90: 254-262. 10.1254/jjp.90.254.CrossRefPubMed
6.
go back to reference Tohda C, Matsumoto N, Zou K, Meselhy MR, Komatsu K: Aβ(25–35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology. 2004, 29: 860-868. 10.1038/sj.npp.1300388.CrossRefPubMed Tohda C, Matsumoto N, Zou K, Meselhy MR, Komatsu K: Aβ(25–35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology. 2004, 29: 860-868. 10.1038/sj.npp.1300388.CrossRefPubMed
7.
go back to reference Tohda C, Tamura T, Matsuyama S, Komatsu K: Promotion of axonal maturation and prevention of memory loss in mice by extracts of Astragalus mongholicus. Brit J Pharmacol. 2006, 149: 532-541. 10.1038/sj.bjp.0706865.CrossRef Tohda C, Tamura T, Matsuyama S, Komatsu K: Promotion of axonal maturation and prevention of memory loss in mice by extracts of Astragalus mongholicus. Brit J Pharmacol. 2006, 149: 532-541. 10.1038/sj.bjp.0706865.CrossRef
8.
go back to reference Naito R, Tohda C: Characterization of anti-neurodegenerative effects of Polygala tenuifolia in Aβ(25–35)-treated cortical neurons. Biol Pharm Bull. 2006, 29: 1892-1896. 10.1248/bpb.29.1892.CrossRefPubMed Naito R, Tohda C: Characterization of anti-neurodegenerative effects of Polygala tenuifolia in Aβ(25–35)-treated cortical neurons. Biol Pharm Bull. 2006, 29: 1892-1896. 10.1248/bpb.29.1892.CrossRefPubMed
9.
go back to reference Seltzer B: Donepezil: an update. Expert Opin Pharmacother. 2007, 8: 1011-1023. 10.1517/14656566.8.7.1011.CrossRefPubMed Seltzer B: Donepezil: an update. Expert Opin Pharmacother. 2007, 8: 1011-1023. 10.1517/14656566.8.7.1011.CrossRefPubMed
10.
go back to reference Tohda C, Tamura T, Komatsu K: Repair of amyloid β(25–35)-induced memory impairment and synaptic loss by a Kampo formula, Zokumei-to. Brain Res. 2003, 990: 141-147. 10.1016/S0006-8993(03)03449-8.CrossRefPubMed Tohda C, Tamura T, Komatsu K: Repair of amyloid β(25–35)-induced memory impairment and synaptic loss by a Kampo formula, Zokumei-to. Brain Res. 2003, 990: 141-147. 10.1016/S0006-8993(03)03449-8.CrossRefPubMed
11.
go back to reference Gruden MA, Davudova TB, Malisauskas M, Zamotin VV, Sewell RD, Voskresenskaya NI, Kostanyan IA, Sherstnev VV, Morozova-Roche LA: Autoimmune responses to amyloid structures of Abeta(25–35) peptide and human lysozyme in the serum of patients with progressive Alzheimer's disease. Dement Geriatr Cogn Disord. 2004, 18: 165-171. 10.1159/000079197.CrossRefPubMed Gruden MA, Davudova TB, Malisauskas M, Zamotin VV, Sewell RD, Voskresenskaya NI, Kostanyan IA, Sherstnev VV, Morozova-Roche LA: Autoimmune responses to amyloid structures of Abeta(25–35) peptide and human lysozyme in the serum of patients with progressive Alzheimer's disease. Dement Geriatr Cogn Disord. 2004, 18: 165-171. 10.1159/000079197.CrossRefPubMed
12.
go back to reference Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW: Structure-activity analyses of β-amyloid peptides: contribution of the β25–35 region to aggregation and neurotoxicity. J Neurochem. 1995, 64: 253-265.CrossRefPubMed Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW: Structure-activity analyses of β-amyloid peptides: contribution of the β25–35 region to aggregation and neurotoxicity. J Neurochem. 1995, 64: 253-265.CrossRefPubMed
13.
go back to reference Yankner BA, Duffy LK, Kirschner DA: Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science. 1990, 250: 279-282. 10.1126/science.2218531.CrossRefPubMed Yankner BA, Duffy LK, Kirschner DA: Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science. 1990, 250: 279-282. 10.1126/science.2218531.CrossRefPubMed
14.
go back to reference Grace EA, Busciglio J: Aberrant activation of focal adhesion proteins mediates fibrillar amyloid β-induced neuronal dystrophy. J Neurosci. 2003, 23 (2): 493-502.PubMed Grace EA, Busciglio J: Aberrant activation of focal adhesion proteins mediates fibrillar amyloid β-induced neuronal dystrophy. J Neurosci. 2003, 23 (2): 493-502.PubMed
15.
go back to reference Kuboyama T, Tohda C, Komatsu K: Neuritic regeneration and synaptic reconstruction induced by withanolide A. Brit J Pharmacol. 2005, 144: 961-971. 10.1038/sj.bjp.0706122.CrossRef Kuboyama T, Tohda C, Komatsu K: Neuritic regeneration and synaptic reconstruction induced by withanolide A. Brit J Pharmacol. 2005, 144: 961-971. 10.1038/sj.bjp.0706122.CrossRef
16.
go back to reference Klementiev B, Novikova T, Novitskaya V, Walmod PS, Dmytriyeva O, Pakkenberg B, Berezin V, Bock E: A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Aβ25–35. Neuroscience. 2007, 145: 209-224. 10.1016/j.neuroscience.2006.11.060.CrossRefPubMed Klementiev B, Novikova T, Novitskaya V, Walmod PS, Dmytriyeva O, Pakkenberg B, Berezin V, Bock E: A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Aβ25–35. Neuroscience. 2007, 145: 209-224. 10.1016/j.neuroscience.2006.11.060.CrossRefPubMed
17.
go back to reference Azuma K, Yuhisa H, Moriguchi A, Rakuki H, Ogiwara T: (meeting report, title and abstract in Japanese). Jpn J Geriatrics. 2004, 41: 129- Azuma K, Yuhisa H, Moriguchi A, Rakuki H, Ogiwara T: (meeting report, title and abstract in Japanese). Jpn J Geriatrics. 2004, 41: 129-
18.
go back to reference Yabe T, Toriizuka K, Yamada H: Effect of Kampo medicine acetyltransferase activity in rat embryo septal cultures. J Trad Med. 1995, 12: 54-60. Yabe T, Toriizuka K, Yamada H: Effect of Kampo medicine acetyltransferase activity in rat embryo septal cultures. J Trad Med. 1995, 12: 54-60.
19.
go back to reference Hashimoto Y, Niikura T, Ito Y, Sudo H, Hata M, Arakawa E, Abe Y, Kita Y, Nishimoto I: Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer's disease-relevant insults detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer's disease-relevant insults. J Neurosci. 2001, 21: 9235-9245.PubMed Hashimoto Y, Niikura T, Ito Y, Sudo H, Hata M, Arakawa E, Abe Y, Kita Y, Nishimoto I: Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer's disease-relevant insults detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer's disease-relevant insults. J Neurosci. 2001, 21: 9235-9245.PubMed
20.
go back to reference Schlaepfer WW, Lee C, Lee VM, Zimmerman UJ: An immunoblot study of neurofilament degradation in situ and during calcium-activated proteolysis. J Neurochem. 1985, 44: 502-509. 10.1111/j.1471-4159.1985.tb05442.x.CrossRefPubMed Schlaepfer WW, Lee C, Lee VM, Zimmerman UJ: An immunoblot study of neurofilament degradation in situ and during calcium-activated proteolysis. J Neurochem. 1985, 44: 502-509. 10.1111/j.1471-4159.1985.tb05442.x.CrossRefPubMed
21.
go back to reference Billger M, Wallin M, Karlsson JO: Proteolysis of tubulin and microtubule-associated proteins 1 and 2 by calpain I and II. Difference in sensitivity of assembled and disassembled microtubules. Cell Calcium. 1988, 9: 33-44. 10.1016/0143-4160(88)90036-X.CrossRefPubMed Billger M, Wallin M, Karlsson JO: Proteolysis of tubulin and microtubule-associated proteins 1 and 2 by calpain I and II. Difference in sensitivity of assembled and disassembled microtubules. Cell Calcium. 1988, 9: 33-44. 10.1016/0143-4160(88)90036-X.CrossRefPubMed
22.
go back to reference Di Rosa G, Odrijin T, Nixon RA, Arancio O: Calpain inhibitors: a treatment for Alzheimer's disease. J Mol Neurosci. 2002, 19: 135-141. 10.1007/s12031-002-0024-4.CrossRefPubMed Di Rosa G, Odrijin T, Nixon RA, Arancio O: Calpain inhibitors: a treatment for Alzheimer's disease. J Mol Neurosci. 2002, 19: 135-141. 10.1007/s12031-002-0024-4.CrossRefPubMed
23.
go back to reference Kelly BL, Vassar R, Ferreira A: Beta-amyloid-induced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease. J Biol Chem. 2005, 280: 31746-31753. 10.1074/jbc.M503259200.CrossRefPubMedPubMedCentral Kelly BL, Vassar R, Ferreira A: Beta-amyloid-induced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease. J Biol Chem. 2005, 280: 31746-31753. 10.1074/jbc.M503259200.CrossRefPubMedPubMedCentral
24.
go back to reference Nilsson E, Alafuzoff I, Blennow K, Blomgren K, Hall CM, Janson I, Karlsson I, Wallin A, Gottfreis CG, Karlsson JO: Calpain and calpastatin in normal and Alzheimer-degenerated human brain tissue. Neurobiol Aging. 1990, 11: 425-431. 10.1016/0197-4580(90)90009-O.CrossRefPubMed Nilsson E, Alafuzoff I, Blennow K, Blomgren K, Hall CM, Janson I, Karlsson I, Wallin A, Gottfreis CG, Karlsson JO: Calpain and calpastatin in normal and Alzheimer-degenerated human brain tissue. Neurobiol Aging. 1990, 11: 425-431. 10.1016/0197-4580(90)90009-O.CrossRefPubMed
25.
go back to reference Bird CM, Burgess N: The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci. 2008, 9: 182-194. 10.1038/nrn2335.CrossRefPubMed Bird CM, Burgess N: The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci. 2008, 9: 182-194. 10.1038/nrn2335.CrossRefPubMed
26.
go back to reference Good MA, Hale G: The "Swedish" mutation of the amyloid precursor protein (APPswe) dissociates components of object-location memory in aged Tg2576 mice. Behav Neurosci. 2007, 121: 1180-1191. 10.1037/0735-7044.121.6.1180.CrossRefPubMed Good MA, Hale G: The "Swedish" mutation of the amyloid precursor protein (APPswe) dissociates components of object-location memory in aged Tg2576 mice. Behav Neurosci. 2007, 121: 1180-1191. 10.1037/0735-7044.121.6.1180.CrossRefPubMed
27.
go back to reference Squire LR, Wixted JT, Clark RE: Recognition memory and the medial temporal lobe: a new perspective. Nat Rev Neurosci. 2007, 8: 872-883. 10.1038/nrn2154.CrossRefPubMedPubMedCentral Squire LR, Wixted JT, Clark RE: Recognition memory and the medial temporal lobe: a new perspective. Nat Rev Neurosci. 2007, 8: 872-883. 10.1038/nrn2154.CrossRefPubMedPubMedCentral
28.
go back to reference Ramos JM, Vaquero JM: The perirhinal cortex of the rat is necessary for spatial memory retention long after but not soon after learning. Physiol Behav. 2005, 86: 118-127. 10.1016/j.physbeh.2005.07.004.CrossRefPubMed Ramos JM, Vaquero JM: The perirhinal cortex of the rat is necessary for spatial memory retention long after but not soon after learning. Physiol Behav. 2005, 86: 118-127. 10.1016/j.physbeh.2005.07.004.CrossRefPubMed
29.
go back to reference Barker GR, Bird F, Alexander V, Warburton EC: Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci. 2007, 27: 2948-2957. 10.1523/JNEUROSCI.5289-06.2007.CrossRefPubMed Barker GR, Bird F, Alexander V, Warburton EC: Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci. 2007, 27: 2948-2957. 10.1523/JNEUROSCI.5289-06.2007.CrossRefPubMed
30.
go back to reference Rogers JL, Kesner RP: Lesions of the dorsal hippocampus or parietal cortex differentially affect spatial information processing. Behav Neurosci. 2006, 120: 852-860. 10.1037/0735-7044.120.4.852.CrossRefPubMed Rogers JL, Kesner RP: Lesions of the dorsal hippocampus or parietal cortex differentially affect spatial information processing. Behav Neurosci. 2006, 120: 852-860. 10.1037/0735-7044.120.4.852.CrossRefPubMed
31.
go back to reference DeCoteau WE, Kesner RP: Effects of hippocampal and parietal cortex lesions on the processing of multiple-object scenes. Behav Neurosci. 1998, 112: 68-82. 10.1037/0735-7044.112.1.68.CrossRefPubMed DeCoteau WE, Kesner RP: Effects of hippocampal and parietal cortex lesions on the processing of multiple-object scenes. Behav Neurosci. 1998, 112: 68-82. 10.1037/0735-7044.112.1.68.CrossRefPubMed
32.
go back to reference Heredia L, Helguera P, de Olmos S, Kedikian G, Solá Vigo F, LaFerla F, Staufenbiel M, de Olmos J, Busciglio J, Cáceres A, Lorenzo A: Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer's disease. J Neurosci. 2006, 26: 6533-6542. 10.1523/JNEUROSCI.5567-05.2006.CrossRefPubMed Heredia L, Helguera P, de Olmos S, Kedikian G, Solá Vigo F, LaFerla F, Staufenbiel M, de Olmos J, Busciglio J, Cáceres A, Lorenzo A: Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer's disease. J Neurosci. 2006, 26: 6533-6542. 10.1523/JNEUROSCI.5567-05.2006.CrossRefPubMed
33.
go back to reference Song MS, Saavedra L, de Chaves EI: Apoptosis is secondary to non-apoptotic axonal degeneration in neurons exposed to Aβ in distal axons. Neurobiol Aging. 2006, 27: 1224-1238. 10.1016/j.neurobiolaging.2005.06.007.CrossRefPubMed Song MS, Saavedra L, de Chaves EI: Apoptosis is secondary to non-apoptotic axonal degeneration in neurons exposed to Aβ in distal axons. Neurobiol Aging. 2006, 27: 1224-1238. 10.1016/j.neurobiolaging.2005.06.007.CrossRefPubMed
34.
go back to reference Resende R, Pereira C, Agostinho P, Vieira AP, Malva JO, Oliveira CR: Susceptibility of hippocampal neurons to Abeta peptide toxicity is associated with perturbation of Ca2+ homeostasis. Brain Res. 2007, 1143: 11-21. 10.1016/j.brainres.2007.01.071.CrossRefPubMed Resende R, Pereira C, Agostinho P, Vieira AP, Malva JO, Oliveira CR: Susceptibility of hippocampal neurons to Abeta peptide toxicity is associated with perturbation of Ca2+ homeostasis. Brain Res. 2007, 1143: 11-21. 10.1016/j.brainres.2007.01.071.CrossRefPubMed
35.
go back to reference Yao M, Nguyen TV, Pike CJ: Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci. 2005, 25: 1149-1158. 10.1523/JNEUROSCI.4736-04.2005.CrossRefPubMed Yao M, Nguyen TV, Pike CJ: Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci. 2005, 25: 1149-1158. 10.1523/JNEUROSCI.4736-04.2005.CrossRefPubMed
36.
go back to reference Fifre A, Sponne I, Koziel V, Kriem B, Yen Potin FT, Bihain BE, Olivier JL, Oster T, Pillot T: Microtubule-associated protein MAP1A, MAP1B, and MAP2 proteolysis during soluble amyloid beta-peptide-induced neuronal apoptosis. Synergistic involvement of calpain and caspase-3. J Biol Chem. 2006, 281: 229-240. 10.1074/jbc.M507378200.CrossRefPubMed Fifre A, Sponne I, Koziel V, Kriem B, Yen Potin FT, Bihain BE, Olivier JL, Oster T, Pillot T: Microtubule-associated protein MAP1A, MAP1B, and MAP2 proteolysis during soluble amyloid beta-peptide-induced neuronal apoptosis. Synergistic involvement of calpain and caspase-3. J Biol Chem. 2006, 281: 229-240. 10.1074/jbc.M507378200.CrossRefPubMed
37.
go back to reference Tohda C, Tamura T, Komatsu K: Repair of amyloid beta(25–35)-induced memory impairment and synaptic loss by a Kampo formula, Zokumei-to. Brain Res. 2003, 990: 141-147. 10.1016/S0006-8993(03)03449-8.CrossRefPubMed Tohda C, Tamura T, Komatsu K: Repair of amyloid beta(25–35)-induced memory impairment and synaptic loss by a Kampo formula, Zokumei-to. Brain Res. 2003, 990: 141-147. 10.1016/S0006-8993(03)03449-8.CrossRefPubMed
38.
go back to reference Shea TB, Cressman CM, Spencer MJ, Beermann ML, Nixon RA: Enhancement of neurite outgrowth following calpain inhibition is mediated by protein kinase C. J Neurochem. 1995, 65: 517-527.CrossRefPubMed Shea TB, Cressman CM, Spencer MJ, Beermann ML, Nixon RA: Enhancement of neurite outgrowth following calpain inhibition is mediated by protein kinase C. J Neurochem. 1995, 65: 517-527.CrossRefPubMed
39.
go back to reference Robles E, Huttenlocher A, Gomez TM: Filopodial calcium transients regulate growth cone motility and guidance through local activation of calpain. Neuron. 2003, 38: 597-609. 10.1016/S0896-6273(03)00260-5.CrossRefPubMed Robles E, Huttenlocher A, Gomez TM: Filopodial calcium transients regulate growth cone motility and guidance through local activation of calpain. Neuron. 2003, 38: 597-609. 10.1016/S0896-6273(03)00260-5.CrossRefPubMed
40.
go back to reference Nixon RA, Saito KI, Grynspan F, Griffin WR, Katayama S, Honda T, Mohan PS, Shea TB, Beermann M: Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease. Ann NY Acad Sci. 1994, 747: 77-91.CrossRefPubMed Nixon RA, Saito KI, Grynspan F, Griffin WR, Katayama S, Honda T, Mohan PS, Shea TB, Beermann M: Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease. Ann NY Acad Sci. 1994, 747: 77-91.CrossRefPubMed
41.
go back to reference Doumit ME, Koohmaraie M: Immunoblot analysis of calpastatin degradation: evidence for cleavage by calpain in postmortem muscle. J Anim Sci. 1999, 77: 1467-1473.PubMed Doumit ME, Koohmaraie M: Immunoblot analysis of calpastatin degradation: evidence for cleavage by calpain in postmortem muscle. J Anim Sci. 1999, 77: 1467-1473.PubMed
42.
go back to reference Vaisid T, Kosower NS, Katzav A, Chapman J, Barnoy S: Calpastatin levels affect calpain activation and calpain proteolytic activity in APP transgenic mouse model of Alzheimer's disease. Neurochem Int. 2007, 51: 391-397. 10.1016/j.neuint.2007.04.004.CrossRefPubMed Vaisid T, Kosower NS, Katzav A, Chapman J, Barnoy S: Calpastatin levels affect calpain activation and calpain proteolytic activity in APP transgenic mouse model of Alzheimer's disease. Neurochem Int. 2007, 51: 391-397. 10.1016/j.neuint.2007.04.004.CrossRefPubMed
Metadata
Title
Kihi-to, a herbal traditional medicine, improves Abeta(25–35)-induced memory impairment and losses of neurites and synapses
Authors
Chihiro Tohda
Rie Naito
Eri Joyashiki
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2008
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/1472-6882-8-49

Other articles of this Issue 1/2008

BMC Complementary Medicine and Therapies 1/2008 Go to the issue