Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Kidney Cancer | Research

Overexpression of CYP11A1 recovers cell cycle distribution in renal cell carcinoma Caki-1

Authors: Hien Thi My Ong, Tae-Hun Kim, Eda Ates, Jae-Chul Pyun, Min-Jung Kang

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Background

Clear cell renal carcinoma is commonly known for its metastasis propensity to outspread to other organs and is asymptomatic in the early stage. Recent studies have shown that deficiencies in CYP11A1 expression can lead to fatal adrenal failure if left untreated and are associated with downstream regulation in various cancer types. However, the molecular mechanisms of CYP11A1 and kidney cancer proliferation remain unclear.

Methods

Normal and renal carcinoma cell lines (HEK293 and Caki-1) were transfected with plasmid encoding CYP11A1 to overexpress the P450scc protein. Cell cycle distribution was investigated using flow cytometry. The expression of proteins related to C-Raf/ERK/JNK/p38 signaling pathways was examined using western blot.

Results

We observed that CYP11A1 overexpression suppressed the cyclin B1 and cell-division cycle 2 expression while cyclin-dependent kinases 2 and 4 were unaffected. Cancer cell migration and invasion were suppressed along with epithelial-intermediate metastatic markers Snail and Vimentin. In addition, in CYP11A1-overexpressing Caki-1 cells, cdc2/cyclinB1 was downregulated while the phosphorylation of cdc25c, a G2/M arrest-related upstream signal, was increased. The intrinsic-mitochondrial apoptosis markers were not significantly altered. We also identified that the C-Raf/ERK/JNK/p38 pathway is an important pro-apoptotic mechanism in CYP11A1-overexpressing cell-based models. Our results suggest that CYP11A1 overexpression recovered the disturbed cell cycle arrest distribution in renal carcinoma cell line Caki-1 through G2/M arrest and C-Raf/ERK/JNK pathway.

Conclusions

Our findings may suggest promising new therapeutic targets to suppress kidney cancer proliferation without affecting normal cells, eventually improving the survival of patients with cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3(1):1–9.CrossRef Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3(1):1–9.CrossRef
3.
go back to reference Because CH, Diverse O. Early diagnosis improves survival in kidney cancer. Practitioner. 2012;256(1748):13–6. Because CH, Diverse O. Early diagnosis improves survival in kidney cancer. Practitioner. 2012;256(1748):13–6.
4.
go back to reference Stitzlein L, Rao PS, Dudley R. Emerging oral VEGF inhibitors for the treatment of renal cell carcinoma. Expert Opin Investig Drugs. 2019;28(2):121–30.CrossRef Stitzlein L, Rao PS, Dudley R. Emerging oral VEGF inhibitors for the treatment of renal cell carcinoma. Expert Opin Investig Drugs. 2019;28(2):121–30.CrossRef
6.
go back to reference Ingels A, Campi R, Capitanio U, Amparore D, Bertolo R, Carbonara U, Erdem S, Kara Ö, Klatte T, Kriegmair MC, Marchioni M. Complementary roles of surgery and systemic treatment in clear cell renal cell carcinoma. Nat Rev Urol. 2022;11:1–28. Ingels A, Campi R, Capitanio U, Amparore D, Bertolo R, Carbonara U, Erdem S, Kara Ö, Klatte T, Kriegmair MC, Marchioni M. Complementary roles of surgery and systemic treatment in clear cell renal cell carcinoma. Nat Rev Urol. 2022;11:1–28.
7.
go back to reference Dekernion JB, Ramming KP, Smith RB. The natural history of metastatic renal cell carcinoma: a computer analysis. J Urol. 1978;120(2):148–52.CrossRef Dekernion JB, Ramming KP, Smith RB. The natural history of metastatic renal cell carcinoma: a computer analysis. J Urol. 1978;120(2):148–52.CrossRef
8.
go back to reference Solano ME, Arck PC. Steroids, pregnancy and fetal development. Front Immunol. 2020;22(10):3017.CrossRef Solano ME, Arck PC. Steroids, pregnancy and fetal development. Front Immunol. 2020;22(10):3017.CrossRef
9.
go back to reference Huynh TP, Barwe SP, Lee SJ, McSpadden R, Franco OE, Hayward SW, Damoiseaux R, Grubbs SS, Petrelli NJ, Rajasekaran AK. Glucocorticoids suppress renal cell carcinoma progression by enhancing Na, K-ATPase beta-1 subunit expression. PLoS ONE. 2015;10(4): e0122442.CrossRef Huynh TP, Barwe SP, Lee SJ, McSpadden R, Franco OE, Hayward SW, Damoiseaux R, Grubbs SS, Petrelli NJ, Rajasekaran AK. Glucocorticoids suppress renal cell carcinoma progression by enhancing Na, K-ATPase beta-1 subunit expression. PLoS ONE. 2015;10(4): e0122442.CrossRef
10.
go back to reference Rajasekaran SA, Palmer LG, Moon SY, Peralta Soler A, Apodaca GL, Harper JF, Zheng Y, Rajasekaran AK. Na, K-ATPase activity is required for formation of tight junctions, desmosomes, and induction of polarity in epithelial cells. Mol Biol Cell. 2001;12(12):3717–32.CrossRef Rajasekaran SA, Palmer LG, Moon SY, Peralta Soler A, Apodaca GL, Harper JF, Zheng Y, Rajasekaran AK. Na, K-ATPase activity is required for formation of tight junctions, desmosomes, and induction of polarity in epithelial cells. Mol Biol Cell. 2001;12(12):3717–32.CrossRef
11.
go back to reference Fan Z, Wang Z, Chen W, Cao Z, Li Y. Association between the CYP11 family and six cancer types. Oncol Lett. 2016;12(1):35–40.CrossRef Fan Z, Wang Z, Chen W, Cao Z, Li Y. Association between the CYP11 family and six cancer types. Oncol Lett. 2016;12(1):35–40.CrossRef
13.
go back to reference Claus EB, Risch N, Thompson WD. Genetic analysis of breast cancer in the cancer and steroid hormone study. Am J Hum Genet. 1991;48(2):232.PubMedPubMedCentral Claus EB, Risch N, Thompson WD. Genetic analysis of breast cancer in the cancer and steroid hormone study. Am J Hum Genet. 1991;48(2):232.PubMedPubMedCentral
14.
go back to reference He Q, Liang CH, Lippard SJ. Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci. 2000;97(11):5768–72.CrossRef He Q, Liang CH, Lippard SJ. Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci. 2000;97(11):5768–72.CrossRef
15.
go back to reference Platz EA, Leitzmann MF, Rifai N, Kantoff PW, Chen YC, Stampfer MJ, Willett WC, Giovannucci E. Sex steroid hormones and the androgen receptor gene CAG repeat and subsequent risk of prostate cancer in the prostate-specific antigen era. Cancer Epidemiol Biomarkers Prev. 2005;14(5):1262–9.CrossRef Platz EA, Leitzmann MF, Rifai N, Kantoff PW, Chen YC, Stampfer MJ, Willett WC, Giovannucci E. Sex steroid hormones and the androgen receptor gene CAG repeat and subsequent risk of prostate cancer in the prostate-specific antigen era. Cancer Epidemiol Biomarkers Prev. 2005;14(5):1262–9.CrossRef
16.
go back to reference Kaiser U, Hofmann J, Schilli M, Wegmann B, Klotz U, Wedel S, Virmani AK, Wollmer E, Branscheid D, Gazdar AF, Havemann K. Steroid-hormone receptors in cell lines and tumor biopsies of human lung cancer. Int J Cancer. 1996;67(3):357–64.CrossRef Kaiser U, Hofmann J, Schilli M, Wegmann B, Klotz U, Wedel S, Virmani AK, Wollmer E, Branscheid D, Gazdar AF, Havemann K. Steroid-hormone receptors in cell lines and tumor biopsies of human lung cancer. Int J Cancer. 1996;67(3):357–64.CrossRef
17.
go back to reference De Maria N, Manno M, Villa E. Sex hormones and liver cancer. Mol Cell Endocrinol. 2002;193(1–2):59–63.CrossRef De Maria N, Manno M, Villa E. Sex hormones and liver cancer. Mol Cell Endocrinol. 2002;193(1–2):59–63.CrossRef
18.
go back to reference Lointier P, Wildrick DM, Boman BM. The effects of steroid hormones on a human colon cancer cell line in vitro. Anticancer Res. 1992;12(4):1327–30.PubMed Lointier P, Wildrick DM, Boman BM. The effects of steroid hormones on a human colon cancer cell line in vitro. Anticancer Res. 1992;12(4):1327–30.PubMed
19.
go back to reference Wang X, Li M, Zhang X, Li Y, He G, Dinnyés A, Sun Q, Xu W. CYP11A1 upregulation leads to trophoblast oxidative stress and fetal neurodevelopmental toxicity that can be rescued by vitamin D. Front Mol Biosci. 2021;15:520. Wang X, Li M, Zhang X, Li Y, He G, Dinnyés A, Sun Q, Xu W. CYP11A1 upregulation leads to trophoblast oxidative stress and fetal neurodevelopmental toxicity that can be rescued by vitamin D. Front Mol Biosci. 2021;15:520.
20.
go back to reference Glube N, Giessl A, Wolfrum U, Langguth P. Caki-1 cells represent an in vitro model system for studying the human proximal tubule epithelium. Nephron Exp Nephrol. 2007;107(2):e47-56.CrossRef Glube N, Giessl A, Wolfrum U, Langguth P. Caki-1 cells represent an in vitro model system for studying the human proximal tubule epithelium. Nephron Exp Nephrol. 2007;107(2):e47-56.CrossRef
21.
go back to reference Ke JY, Zhang W, Gong RS, Cen WJ, Huang HQ, Li YR, Kong WD, Jiang JW. A monomer purified from Paris polyphylla (PP-22) triggers S and G2/M phase arrest and apoptosis in human tongue squamous cell carcinoma SCC-15 by activating the p38/cdc25/cdc2 and caspase 8/caspase 3 pathways. Tumor biol. 2016;37(11):14863–72.CrossRef Ke JY, Zhang W, Gong RS, Cen WJ, Huang HQ, Li YR, Kong WD, Jiang JW. A monomer purified from Paris polyphylla (PP-22) triggers S and G2/M phase arrest and apoptosis in human tongue squamous cell carcinoma SCC-15 by activating the p38/cdc25/cdc2 and caspase 8/caspase 3 pathways. Tumor biol. 2016;37(11):14863–72.CrossRef
22.
go back to reference Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene. 2001;20(15):1803–15.CrossRef Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene. 2001;20(15):1803–15.CrossRef
23.
go back to reference van Oijen MG, Slootweg PJ. Gain-of-function mutations in the tumor suppressor gene p53. Clin Cancer Res. 2000;6(6):2138–45.PubMed van Oijen MG, Slootweg PJ. Gain-of-function mutations in the tumor suppressor gene p53. Clin Cancer Res. 2000;6(6):2138–45.PubMed
24.
go back to reference Ras J, Van Ophem PW, Reijnders WN, Van Spanning RJ, Duine JA, Stouthamer AH, Harms N. Isolation, sequencing, and mutagenesis of the gene encoding NAD-and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth. J Bacteriol. 1995;177(1):247–51.CrossRef Ras J, Van Ophem PW, Reijnders WN, Van Spanning RJ, Duine JA, Stouthamer AH, Harms N. Isolation, sequencing, and mutagenesis of the gene encoding NAD-and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth. J Bacteriol. 1995;177(1):247–51.CrossRef
25.
go back to reference D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92.CrossRef D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92.CrossRef
26.
go back to reference Mandal R, Becker S, Strebhardt K. Stamping out RAF and MEK1/2 to inhibit the ERK1/2 pathway: an emerging threat to anticancer therapy. Oncogene. 2016;35(20):2547–61.CrossRef Mandal R, Becker S, Strebhardt K. Stamping out RAF and MEK1/2 to inhibit the ERK1/2 pathway: an emerging threat to anticancer therapy. Oncogene. 2016;35(20):2547–61.CrossRef
27.
go back to reference Nichols RJ, Haderk F, Stahlhut C, Schulze CJ, Hemmati G, Wildes D, Tzitzilonis C, Mordec K, Marquez A, Romero J, Hsieh T. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nat Cell Biol. 2018;20(9):1064–73.CrossRef Nichols RJ, Haderk F, Stahlhut C, Schulze CJ, Hemmati G, Wildes D, Tzitzilonis C, Mordec K, Marquez A, Romero J, Hsieh T. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nat Cell Biol. 2018;20(9):1064–73.CrossRef
28.
go back to reference Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22(2):153–83.PubMed Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22(2):153–83.PubMed
29.
go back to reference Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23(16):2838–49.CrossRef Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23(16):2838–49.CrossRef
Metadata
Title
Overexpression of CYP11A1 recovers cell cycle distribution in renal cell carcinoma Caki-1
Authors
Hien Thi My Ong
Tae-Hun Kim
Eda Ates
Jae-Chul Pyun
Min-Jung Kang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02726-4

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine