Skip to main content
Top
Published in: Cancer Cell International 1/2021

01-12-2021 | Kidney Cancer | Primary research

Down-regulation of BCL2L13 renders poor prognosis in clear cell and papillary renal cell carcinoma

Authors: Fei Meng, Luojin Zhang, Mingjun Zhang, Kaiqin Ye, Wei Guo, Yu Liu, Wulin Yang, Zhimin Zhai, Hongzhi Wang, Jun Xiao, Haiming Dai

Published in: Cancer Cell International | Issue 1/2021

Login to get access

Abstract

Background

BCL2L13 belongs to the BCL2 super family, with its protein product exhibits capacity of apoptosis-mediating in diversified cell lines. Previous studies have shown that BCL2L13 has functional consequence in several tumor types, including ALL and GBM, however, its function in kidney cancer remains as yet unclearly.

Methods

Multiple web-based portals were employed to analyze the effect of BCL2L13 in kidney cancer using the data from TCGA database. Functional enrichment analysis and hubs of BCL2L13 co-expressed genes in clear cell renal cell carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC) were carried out on Cytoscape. Evaluation of BCL2L13 protein level was accomplished through immunohistochemistry on paraffin embedded renal cancer tissue sections. Western blotting and flow cytometry were implemented to further analyze the pro-apoptotic function of BCL2L13 in ccRCC cell line 786-0.

Results

BCL2L13 expression is significantly decreased in ccRCC and pRCC patients, however, mutations and copy number alterations are rarely observed. The poor prognosis of ccRCC that derived from down-regulated BCL2L13 is independent of patients’ gender or tumor grade. Furthermore, BCL2L13 only weakly correlates with the genes that mutated in kidney cancer or the genes that associated with inherited kidney cancer predisposing syndrome, while actively correlates with SLC25A4. As a downstream effector of BCL2L13 in its pro-apoptotic pathway, SLC25A4 is found as one of the hub genes that involved in the physiological function of BCL2L13 in kidney cancer tissues.

Conclusions

Down-regulation of BCL2L13 renders poor prognosis in ccRCC and pRCC. This disadvantageous factor is independent of any well-known kidney cancer related genes, so BCL2L13 can be used as an effective indicator for prognostic evaluation of renal cell carcinoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chowdhury N, Drake CG. Kidney cancer: an overview of current therapeutic approaches. Urol Clin North Am. 2020;47(4):419–31.PubMedCrossRef Chowdhury N, Drake CG. Kidney cancer: an overview of current therapeutic approaches. Urol Clin North Am. 2020;47(4):419–31.PubMedCrossRef
2.
go back to reference Inamura K. Renal cell tumors: understanding their molecular pathological epidemiology and the 2016 WHO classification. Int J Mol Sci. 2017;18(10):2195.PubMedCentralCrossRef Inamura K. Renal cell tumors: understanding their molecular pathological epidemiology and the 2016 WHO classification. Int J Mol Sci. 2017;18(10):2195.PubMedCentralCrossRef
3.
go back to reference Tabibu S, Vinod PK, Jawahar CV. Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning. Sci Rep. 2019;9(1):10509.PubMedPubMedCentralCrossRef Tabibu S, Vinod PK, Jawahar CV. Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning. Sci Rep. 2019;9(1):10509.PubMedPubMedCentralCrossRef
4.
go back to reference Ricketts CJ, De Cubas AA, Fan H, et al. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018;23(1):313–26.PubMedPubMedCentralCrossRef Ricketts CJ, De Cubas AA, Fan H, et al. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018;23(1):313–26.PubMedPubMedCentralCrossRef
5.
go back to reference Dizman N, Philip EJ, Pal SK. Genomic profiling in renal cell carcinoma. Nat Rev Nephrol. 2020;16(8):435–51.PubMedCrossRef Dizman N, Philip EJ, Pal SK. Genomic profiling in renal cell carcinoma. Nat Rev Nephrol. 2020;16(8):435–51.PubMedCrossRef
6.
go back to reference Zhang ZY, Zhang SL, Chen HL, et al. The up-regulation of NDRG1 by HIF counteracts the cancer-promoting effect of HIF in VHL-deficient clear cell renal cell carcinoma. Cell Prolif. 2020;53:12853. Zhang ZY, Zhang SL, Chen HL, et al. The up-regulation of NDRG1 by HIF counteracts the cancer-promoting effect of HIF in VHL-deficient clear cell renal cell carcinoma. Cell Prolif. 2020;53:12853.
9.
go back to reference Carril-Ajuria L, Santos M, Roldán-Romero JM, et al. Prognostic and predictive value of PBRM1 in clear cell renal cell carcinoma. Cancers (Basel). 2019;12(1):16.CrossRef Carril-Ajuria L, Santos M, Roldán-Romero JM, et al. Prognostic and predictive value of PBRM1 in clear cell renal cell carcinoma. Cancers (Basel). 2019;12(1):16.CrossRef
10.
go back to reference Dizman N, Lyou Y, Salgia N, et al. Correlates of clinical benefit from immunotherapy and targeted therapy in metastatic renal cell carcinoma: comprehensive genomic and transcriptomic analysis. J Immunother Cancer. 2020;8(2):e000953.PubMedPubMedCentralCrossRef Dizman N, Lyou Y, Salgia N, et al. Correlates of clinical benefit from immunotherapy and targeted therapy in metastatic renal cell carcinoma: comprehensive genomic and transcriptomic analysis. J Immunother Cancer. 2020;8(2):e000953.PubMedPubMedCentralCrossRef
12.
go back to reference Lam HC, Siroky BJ, Henske EP. Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Nat Rev Nephrol. 2018;14(11):704–16.PubMedCrossRef Lam HC, Siroky BJ, Henske EP. Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Nat Rev Nephrol. 2018;14(11):704–16.PubMedCrossRef
13.
go back to reference Kim SH, Park B, Hwang EC, et al. Retrospective multicenter long-term follow-up analysis of prognostic risk factors for recurrence-free, metastasis-free, cancer-specific, and overall survival after curative nephrectomy in non-metastatic renal cell carcinoma. Front Oncol. 2019;9:859.PubMedPubMedCentralCrossRef Kim SH, Park B, Hwang EC, et al. Retrospective multicenter long-term follow-up analysis of prognostic risk factors for recurrence-free, metastasis-free, cancer-specific, and overall survival after curative nephrectomy in non-metastatic renal cell carcinoma. Front Oncol. 2019;9:859.PubMedPubMedCentralCrossRef
14.
go back to reference Kataoka T, Holler N, Micheau O, et al. Bcl-rambo, a novel Bcl-2 homologue that induces apoptosis via its unique c-terminal extension. J Biol Chem. 2001;276(22):19548–54.PubMedCrossRef Kataoka T, Holler N, Micheau O, et al. Bcl-rambo, a novel Bcl-2 homologue that induces apoptosis via its unique c-terminal extension. J Biol Chem. 2001;276(22):19548–54.PubMedCrossRef
15.
16.
go back to reference Holleman A, Deboer ML, Demenezes RX, et al. The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood. 2006;107(2):769–76.PubMedPubMedCentralCrossRef Holleman A, Deboer ML, Demenezes RX, et al. The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood. 2006;107(2):769–76.PubMedPubMedCentralCrossRef
17.
go back to reference Kim JY, So KJ, Lee S, et al. Bcl-rambo induces apoptosis via interaction with the adenine nucleotide translocator. FEBS Lett. 2012;586(19):3142–9.PubMedCrossRef Kim JY, So KJ, Lee S, et al. Bcl-rambo induces apoptosis via interaction with the adenine nucleotide translocator. FEBS Lett. 2012;586(19):3142–9.PubMedCrossRef
18.
go back to reference Poon H, Quirk C, DeZiel C, et al. Literome: PubMed-scale genomic knowledge base in the cloud. Bioinformatics. 2014;30(19):2840–2.PubMedCrossRef Poon H, Quirk C, DeZiel C, et al. Literome: PubMed-scale genomic knowledge base in the cloud. Bioinformatics. 2014;30(19):2840–2.PubMedCrossRef
20.
21.
go back to reference Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1):D941–7.PubMedCrossRef Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1):D941–7.PubMedCrossRef
22.
go back to reference Carvalho-Silva D, Pierleoni A, Pignatelli M, et al. Open targets platform: new developments and updates two years on. Nucleic Acids Res. 2019;47(D1):D1056–65.PubMedCrossRef Carvalho-Silva D, Pierleoni A, Pignatelli M, et al. Open targets platform: new developments and updates two years on. Nucleic Acids Res. 2019;47(D1):D1056–65.PubMedCrossRef
23.
go back to reference Brooks SA, Brannon AR, Parker JS, et al. ClearCode34: a prognostic risk predictor for localized clear cell renal cell carcinoma. Eur Urol. 2014;66(1):77–84.PubMedPubMedCentralCrossRef Brooks SA, Brannon AR, Parker JS, et al. ClearCode34: a prognostic risk predictor for localized clear cell renal cell carcinoma. Eur Urol. 2014;66(1):77–84.PubMedPubMedCentralCrossRef
24.
go back to reference Ricketts CJ, De Cubas AA, Fan H, et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018;23(12):3698.PubMedCrossRef Ricketts CJ, De Cubas AA, Fan H, et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018;23(12):3698.PubMedCrossRef
25.
go back to reference Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.PubMedPubMedCentralCrossRef Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.PubMedPubMedCentralCrossRef
26.
go back to reference Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):p1.CrossRef Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):p1.CrossRef
28.
go back to reference Li JH, Liu S, Zhou H, et al. starBase v20: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92-97.PubMedCrossRef Li JH, Liu S, Zhou H, et al. starBase v20: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92-97.PubMedCrossRef
29.
go back to reference Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3.PubMedPubMedCentralCrossRef Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3.PubMedPubMedCentralCrossRef
30.
go back to reference Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661–3.PubMedPubMedCentralCrossRef Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661–3.PubMedPubMedCentralCrossRef
32.
go back to reference Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef
33.
go back to reference Wang Z, Yan Z, Zhang B, et al. Identification of a 5-gene signature for clinical and prognostic prediction in gastric cancer patients upon microarray data. Med Oncol. 2013;30(3):678.PubMedCrossRef Wang Z, Yan Z, Zhang B, et al. Identification of a 5-gene signature for clinical and prognostic prediction in gastric cancer patients upon microarray data. Med Oncol. 2013;30(3):678.PubMedCrossRef
34.
35.
go back to reference Zhang X, Huang CR, Pan S, et al. Long non-coding RNA SNHG15 is a competing endogenous RNA of miR-141–3p that prevents osteoarthritis progression by upregulating BCL2L13 expression. Int Immunopharmacol. 2020;83:106425.PubMedCrossRef Zhang X, Huang CR, Pan S, et al. Long non-coding RNA SNHG15 is a competing endogenous RNA of miR-141–3p that prevents osteoarthritis progression by upregulating BCL2L13 expression. Int Immunopharmacol. 2020;83:106425.PubMedCrossRef
38.
39.
go back to reference Smith PS, West H, Whitworth J, et al. Pathogenic germline variants in patients with features of hereditary renal cell carcinoma: evidence for further locus heterogeneity. Genes Chromosomes Cancer. 2021;60(1):5–16.PubMedCrossRef Smith PS, West H, Whitworth J, et al. Pathogenic germline variants in patients with features of hereditary renal cell carcinoma: evidence for further locus heterogeneity. Genes Chromosomes Cancer. 2021;60(1):5–16.PubMedCrossRef
40.
go back to reference Pavlovich CP, Schmidt LS. Searching for the hereditary causes of renal-cell carcinoma. Nat Rev Cancer. 2004;4(5):381–93.PubMedCrossRef Pavlovich CP, Schmidt LS. Searching for the hereditary causes of renal-cell carcinoma. Nat Rev Cancer. 2004;4(5):381–93.PubMedCrossRef
41.
go back to reference Schubert M, Junker K, Heinzelmann J. Prognostic and predictive miRNA biomarkers in bladder, kidney and prostate cancer: where do we stand in biomarker development? J Cancer Res Clin Oncol. 2016;142(8):1673–95.PubMedCrossRef Schubert M, Junker K, Heinzelmann J. Prognostic and predictive miRNA biomarkers in bladder, kidney and prostate cancer: where do we stand in biomarker development? J Cancer Res Clin Oncol. 2016;142(8):1673–95.PubMedCrossRef
42.
go back to reference Jiang D, Sun X, Wang S, et al. Upregulation of miR-874–3p decreases cerebral ischemia/reperfusion injury by directly targeting BMF and BCL2L13. Biomed Pharmacother. 2019;117:108941.PubMedCrossRef Jiang D, Sun X, Wang S, et al. Upregulation of miR-874–3p decreases cerebral ischemia/reperfusion injury by directly targeting BMF and BCL2L13. Biomed Pharmacother. 2019;117:108941.PubMedCrossRef
43.
go back to reference Schouten M, Fratantoni SA, Hubens CJ, et al. MicroRNA-124 and -137 cooperativity controls caspase-3 activity through BCL2L13 in hippocampal neural stem cells. Sci Rep. 2015;5:12448.PubMedPubMedCentralCrossRef Schouten M, Fratantoni SA, Hubens CJ, et al. MicroRNA-124 and -137 cooperativity controls caspase-3 activity through BCL2L13 in hippocampal neural stem cells. Sci Rep. 2015;5:12448.PubMedPubMedCentralCrossRef
44.
go back to reference Ju L, Chen S, Alimujiang M, et al. A novel role for Bcl2l13 in promoting beige adipocyte biogenesis. Biochem Biophys Res Commun. 2018;506(3):485–91.PubMedCrossRef Ju L, Chen S, Alimujiang M, et al. A novel role for Bcl2l13 in promoting beige adipocyte biogenesis. Biochem Biophys Res Commun. 2018;506(3):485–91.PubMedCrossRef
45.
go back to reference Fujiwara M, Tian L, Le PT, et al. The mitophagy receptor Bcl-2-like protein 13 stimulates adipogenesis by regulating mitochondrial oxidative phosphorylation and apoptosis in mice. J Biol Chem. 2019;294(34):12683–94.PubMedPubMedCentralCrossRef Fujiwara M, Tian L, Le PT, et al. The mitophagy receptor Bcl-2-like protein 13 stimulates adipogenesis by regulating mitochondrial oxidative phosphorylation and apoptosis in mice. J Biol Chem. 2019;294(34):12683–94.PubMedPubMedCentralCrossRef
46.
go back to reference Cascone T, McKenzie JA, Mbofung RM, et al. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 2018;27(5):977-987.e4.PubMedPubMedCentralCrossRef Cascone T, McKenzie JA, Mbofung RM, et al. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 2018;27(5):977-987.e4.PubMedPubMedCentralCrossRef
47.
go back to reference Fei M, Liwei Z, Hongzhi W, et al. Role of Bcl-rambo in apoptosis and mitophagy. J Cell Signal. 2018;3:3. Fei M, Liwei Z, Hongzhi W, et al. Role of Bcl-rambo in apoptosis and mitophagy. J Cell Signal. 2018;3:3.
48.
go back to reference Oláh J, Vincze O, Virók D, et al. Interactions of pathological hallmark proteins: tubulin polymerization promoting protein/p25, beta-amyloid, and alpha-synuclein. J Biol Chem. 2011;286(39):34088–100.PubMedPubMedCentralCrossRef Oláh J, Vincze O, Virók D, et al. Interactions of pathological hallmark proteins: tubulin polymerization promoting protein/p25, beta-amyloid, and alpha-synuclein. J Biol Chem. 2011;286(39):34088–100.PubMedPubMedCentralCrossRef
49.
go back to reference Danielsen JM, Sylvestersen KB, Bekker-Jensen S, et al. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics. 2011;10(3):M110.003590.PubMedCrossRef Danielsen JM, Sylvestersen KB, Bekker-Jensen S, et al. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics. 2011;10(3):M110.003590.PubMedCrossRef
50.
go back to reference Rual JF, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437(7062):1173–8.PubMedCrossRef Rual JF, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437(7062):1173–8.PubMedCrossRef
51.
go back to reference Meng F, Sun N, Liu D, et al. BCL2L13: physiological and pathological meanings. Cell Mol Life Sci. 2021;78(6):2419–28.PubMedCrossRef Meng F, Sun N, Liu D, et al. BCL2L13: physiological and pathological meanings. Cell Mol Life Sci. 2021;78(6):2419–28.PubMedCrossRef
52.
go back to reference Lin CY, Chin CH, Wu HH, et al. Hubba: hub objects analyzer–a framework of interactome hubs identification for network biology. Nucleic Acids Res. 2008;36(Web Server issue):W438-443.PubMedPubMedCentralCrossRef Lin CY, Chin CH, Wu HH, et al. Hubba: hub objects analyzer–a framework of interactome hubs identification for network biology. Nucleic Acids Res. 2008;36(Web Server issue):W438-443.PubMedPubMedCentralCrossRef
53.
go back to reference Lu YW, Acoba MG, Selvaraju K, et al. Human adenine nucleotide translocases physically and functionally interact with respirasomes. Mol Biol Cell. 2017;28(11):1489–506.PubMedPubMedCentralCrossRef Lu YW, Acoba MG, Selvaraju K, et al. Human adenine nucleotide translocases physically and functionally interact with respirasomes. Mol Biol Cell. 2017;28(11):1489–506.PubMedPubMedCentralCrossRef
54.
55.
go back to reference Matsubara H, Tanaka R, Tateishi T, et al. The human Bcl-2 family member Bcl-rambo and voltage-dependent anion channels manifest a genetic interaction in Drosophila and cooperatively promote the activation of effector caspases in human cultured cells. Exp Cell Res. 2019;381(2):223–34.PubMedCrossRef Matsubara H, Tanaka R, Tateishi T, et al. The human Bcl-2 family member Bcl-rambo and voltage-dependent anion channels manifest a genetic interaction in Drosophila and cooperatively promote the activation of effector caspases in human cultured cells. Exp Cell Res. 2019;381(2):223–34.PubMedCrossRef
56.
go back to reference Nakazawa M, Matsubara H, Matsushita Y, et al. The human Bcl-2 family member Bcl-rambo localizes to mitochondria and induces apoptosis and morphological aberrations in drosophila. PLoS One. 2016;11(6):e0157823.PubMedPubMedCentralCrossRef Nakazawa M, Matsubara H, Matsushita Y, et al. The human Bcl-2 family member Bcl-rambo localizes to mitochondria and induces apoptosis and morphological aberrations in drosophila. PLoS One. 2016;11(6):e0157823.PubMedPubMedCentralCrossRef
57.
go back to reference Dai H, Ding H, Meng XW, et al. Constitutive BAK activation as a determinant of drug sensitivity in malignant lymphohematopoietic cells. Genes Dev. 2015;29(20):2140–52.PubMedPubMedCentralCrossRef Dai H, Ding H, Meng XW, et al. Constitutive BAK activation as a determinant of drug sensitivity in malignant lymphohematopoietic cells. Genes Dev. 2015;29(20):2140–52.PubMedPubMedCentralCrossRef
58.
go back to reference Correia C, Lee SH, Meng XW, Vincelette ND, Knorr KL, Ding H, Nowakowski GS, Dai H, Kaufmann SH. Emerging understanding of Bcl-2 biology: implications for neoplastic progression and treatment. Biochim Biophys Acta. 2015;1853(7):1658–71.PubMedPubMedCentralCrossRef Correia C, Lee SH, Meng XW, Vincelette ND, Knorr KL, Ding H, Nowakowski GS, Dai H, Kaufmann SH. Emerging understanding of Bcl-2 biology: implications for neoplastic progression and treatment. Biochim Biophys Acta. 2015;1853(7):1658–71.PubMedPubMedCentralCrossRef
59.
go back to reference Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63.PubMedCrossRef Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63.PubMedCrossRef
60.
go back to reference Murakawa T, Okamoto K, Omiya S, et al. A mammalian mitophagy receptor, Bcl2-L-13, recruits the ULK1 complex to induce mitophagy. Cell Rep. 2019;26(2):338-345.e6.PubMedPubMedCentralCrossRef Murakawa T, Okamoto K, Omiya S, et al. A mammalian mitophagy receptor, Bcl2-L-13, recruits the ULK1 complex to induce mitophagy. Cell Rep. 2019;26(2):338-345.e6.PubMedPubMedCentralCrossRef
61.
go back to reference Murakawa T, Yamaguchi O, Hashimoto A, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun. 2015;6:7527.PubMedCrossRef Murakawa T, Yamaguchi O, Hashimoto A, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun. 2015;6:7527.PubMedCrossRef
62.
go back to reference Foster K, Prowse A, van den Berg A, et al. Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. Hum Mol Genet. 1994;3(12):2169–73.PubMedCrossRef Foster K, Prowse A, van den Berg A, et al. Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. Hum Mol Genet. 1994;3(12):2169–73.PubMedCrossRef
63.
go back to reference Manning BD, Cantley LC. Rheb fills a gap between TSC and TOR. Trends Biochem Sci. 2003;28(11):573–6.PubMedCrossRef Manning BD, Cantley LC. Rheb fills a gap between TSC and TOR. Trends Biochem Sci. 2003;28(11):573–6.PubMedCrossRef
Metadata
Title
Down-regulation of BCL2L13 renders poor prognosis in clear cell and papillary renal cell carcinoma
Authors
Fei Meng
Luojin Zhang
Mingjun Zhang
Kaiqin Ye
Wei Guo
Yu Liu
Wulin Yang
Zhimin Zhai
Hongzhi Wang
Jun Xiao
Haiming Dai
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2021
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-021-02039-y

Other articles of this Issue 1/2021

Cancer Cell International 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine