Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2021

Open Access 01-12-2021 | Kidney Cancer | Research

CircAGAP1 promotes tumor progression by sponging miR-15-5p in clear cell renal cell carcinoma

Authors: Qi Lv, Gangmin Wang, Yinan Zhang, Aijun Shen, Junjun Tang, Yi Sun, Chunhui Ma, Peijun Wang

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2021

Login to get access

Abstract

Background

Accumulating evidence has revealed that circular RNAs (circRNAs), as novel noncoding RNAs, play critical roles in carcinogenesis and tumor progression. However, the functions and molecular mechanisms of circRNAs in clear cell renal cell carcinoma (ccRCC) are largely unknown.

Methods

The expression and functions of circAGAP1 were identified in clinical samples, ccRCC cells and in vivo animal models. The molecular mechanism of circAGAP1 was investigated by fluorescence in situ hybridization, RNA immunoprecipitation and luciferase assays.

Results

circAGAP1 (circ0058792) expression was significantly upregulated in ccRCC tissues compared to adjacent nontumor tissues. Moreover, the expression of circAGAP1 was closely related to the tumor size, nuclear grade and clinical stage of ccRCC in patients. Mechanistic studies demonstrated that cytoplasmic circAGAP1 targeted miR-15-5p in an RNA-induced silencing complex. Additionally, miR-15-5p expression was downregulated in ccRCC. Luciferase reporter assays showed that E2F transcription factor 3 (E2F3) was a target of miR-15-5p, and upregulated E2F3 expression was positively correlated with circAGAP1 in ccRCC. Furthermore, the tumor-promoting functions of circAGAP1 could be alleviated by miR-15-5p mimics in vitro and in vivo.

Conclusion

Our results clarify that circAGAP1 exerts its oncogenic functions as a competitive endogenous RNA (ceRNA) by sponging miR-15-5p, which promotes E2F3 expression. Targeting circAGAP1 might be a new attractive therapeutic strategy in ccRCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancerstatistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36cancers in 185 countries. CA A Cancer J Clin. 2018;68:394–424.CrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancerstatistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36cancers in 185 countries. CA A Cancer J Clin. 2018;68:394–424.CrossRef
2.
go back to reference Powles T, Staehler M, Ljungberg B, et al. European Association of Urology guidelines for clear cell renal cancers that are resistant to vascular endothelial growth factor receptor-targeted therapy. Eur Urol. 2016;70(5):705–6.CrossRef Powles T, Staehler M, Ljungberg B, et al. European Association of Urology guidelines for clear cell renal cancers that are resistant to vascular endothelial growth factor receptor-targeted therapy. Eur Urol. 2016;70(5):705–6.CrossRef
10.
go back to reference Leng J, Song Q, Zhao Y, et al. miR-15a represses cancer cell migration and invasion under conditions of hypoxia by targeting and downregulating Bcl-2 expression in human osteosarcoma cells.[J]. Int J Oncol. 2018;52:1095–104.PubMedPubMedCentral Leng J, Song Q, Zhao Y, et al. miR-15a represses cancer cell migration and invasion under conditions of hypoxia by targeting and downregulating Bcl-2 expression in human osteosarcoma cells.[J]. Int J Oncol. 2018;52:1095–104.PubMedPubMedCentral
11.
go back to reference Sirotkin Alexander V, Kisová G, Brenaut P, et al. Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH. Microrna. 2014;3:29–36.CrossRef Sirotkin Alexander V, Kisová G, Brenaut P, et al. Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH. Microrna. 2014;3:29–36.CrossRef
12.
go back to reference Lin K, Farahani M, Yang Y, et al. Loss of MIR15A and MIR16–1 at 13q14 is associated with increased TP53 mRNA, de-repression of BCL2 and adverse outcome in chronic lymphocytic leukaemia. Br J Haematol. 2014;167:346–55.CrossRef Lin K, Farahani M, Yang Y, et al. Loss of MIR15A and MIR16–1 at 13q14 is associated with increased TP53 mRNA, de-repression of BCL2 and adverse outcome in chronic lymphocytic leukaemia. Br J Haematol. 2014;167:346–55.CrossRef
16.
go back to reference Huang E, Ishida S, Pittman J, et al. Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat Genet. 2003;34:226–30.CrossRef Huang E, Ishida S, Pittman J, et al. Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat Genet. 2003;34:226–30.CrossRef
17.
go back to reference Shan Z-N, Tian R, Zhang M, et al. miR128–1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BMI1 and E2F3. Oncotarget. 2016;7:78813–26.CrossRef Shan Z-N, Tian R, Zhang M, et al. miR128–1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BMI1 and E2F3. Oncotarget. 2016;7:78813–26.CrossRef
18.
go back to reference Yu R, Cai L, Chi Y, et al. miR-377 targets CUL4A and regulates metastatic capability in ovarian cancer. Int J Mol Med. 2018;41:3147–56.PubMedPubMedCentral Yu R, Cai L, Chi Y, et al. miR-377 targets CUL4A and regulates metastatic capability in ovarian cancer. Int J Mol Med. 2018;41:3147–56.PubMedPubMedCentral
19.
go back to reference Han R, Zhao J, Lu L. MicroRNA-34a expression affects breast cancer invasion in vitro and patient survival via downregulation of E2F1 and E2F3 expression. Oncol Rep. 2020;43:2062–72.PubMed Han R, Zhao J, Lu L. MicroRNA-34a expression affects breast cancer invasion in vitro and patient survival via downregulation of E2F1 and E2F3 expression. Oncol Rep. 2020;43:2062–72.PubMed
20.
go back to reference Song P, Ye L-F, Zhang C, et al. Long non-coding RNA XIST exerts oncogenic functions in human nasopharyngeal carcinoma by targeting miR-34a-5p. Gene. 2016;592:8–14.CrossRef Song P, Ye L-F, Zhang C, et al. Long non-coding RNA XIST exerts oncogenic functions in human nasopharyngeal carcinoma by targeting miR-34a-5p. Gene. 2016;592:8–14.CrossRef
21.
go back to reference Cheng Z, Yu C, Cui S, Wang H, Jin H, Wang C, Li B, Qin M, Yang C, He J, Zuo Q, Wang S, Liu J, Ye W, Lv Y, Zhao F, Yao M, Jiang L, Qin W. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nat Commun. 2019;10(1):3200. https://doi.org/10.1038/s41467-019-11162-4. Cheng Z, Yu C, Cui S, Wang H, Jin H, Wang C, Li B, Qin M, Yang C, He J, Zuo Q, Wang S, Liu J, Ye W, Lv Y, Zhao F, Yao M, Jiang L, Qin W. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nat Commun. 2019;10(1):3200. https://​doi.​org/​10.​1038/​s41467-019-11162-4.
24.
go back to reference Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010;17:215–20.CrossRef Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010;17:215–20.CrossRef
25.
go back to reference Klein U, Lia M, Crespo M, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17:28–40.CrossRef Klein U, Lia M, Crespo M, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17:28–40.CrossRef
26.
go back to reference Lerner M, Harada M, Lovén J, et al. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp. Cell Res. 2009;315:2941–52.CrossRef Lerner M, Harada M, Lovén J, et al. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp. Cell Res. 2009;315:2941–52.CrossRef
27.
go back to reference Sun C-Y, She X-M, Qin Y, et al. miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF.[J]. Carcinogenesis. 2013;34:426–35.CrossRef Sun C-Y, She X-M, Qin Y, et al. miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF.[J]. Carcinogenesis. 2013;34:426–35.CrossRef
28.
go back to reference Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms. Trends Cell Biol. 2007;17:118–26.CrossRef Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms. Trends Cell Biol. 2007;17:118–26.CrossRef
32.
go back to reference Wu L, Timmers C, Maiti B, et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature. 2001;414:457–62.CrossRef Wu L, Timmers C, Maiti B, et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature. 2001;414:457–62.CrossRef
Metadata
Title
CircAGAP1 promotes tumor progression by sponging miR-15-5p in clear cell renal cell carcinoma
Authors
Qi Lv
Gangmin Wang
Yinan Zhang
Aijun Shen
Junjun Tang
Yi Sun
Chunhui Ma
Peijun Wang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2021
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-021-01864-3

Other articles of this Issue 1/2021

Journal of Experimental & Clinical Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine