Skip to main content
Top
Published in: Cancer Cell International 1/2021

Open Access 01-12-2021 | Kidney Cancer | Primary research

Apolipoprotein C1 stimulates the malignant process of renal cell carcinoma via the Wnt3a signaling

Authors: Hao Jiang, Jing-Yuan Tang, Dong Xue, Yi-Meng Chen, Ting-Chun Wu, Qian-Feng Zhuang, Xiao-Zhou He

Published in: Cancer Cell International | Issue 1/2021

Login to get access

Abstract

Background

Renal cell carcinoma (RCC) is a clinically common tumor in the urinary system, showing an upward trend of both incidence and mortality. Apolipoprotein C1 (APOC1) has been identified as a vital regulator in tumor progression. This study aims to uncover the biological function of APOC1 in RCC process and the underlying mechanism.

Methods

Differential levels of APOC1 in RCC samples and normal tissues in a downloaded TCGA profile and clinical samples collected in our center were detected by quantitative reverse transcription PCR (qRT-PCR). The prognostic value of APOC1 in RCC was assessed by depicting Kaplan–Meier survival curves. After intervening APOC1 level by transfection of sh-APOC1 or oe-APOC1, changes in phenotypes of RCC cells were examined through CCK-8, colony formation, Transwell assay and flow cytometry. Subsequently, protein levels of EMT-related genes influenced by APOC1 were determined by Western blot. The involvement of the Wnt3a signaling in APOC1-regulated malignant process of RCC was then examined through a series of rescue experiments. Finally, a RCC xenograft model was generated in nude mice, aiming to further clarify the in vivo function of APOC1 in RCC process.

Results

APOC1 was upregulated in RCC samples. Notably, its level was correlated to overall survival of RCC patients, displaying a certain prognostic value. APOC1 was able to stimulate proliferative, migratory and invasive abilities in RCC cells. The Wnt3a signaling was identified to be involved in APOC1-mediated RCC process. Notably, Wnt3a was able to reverse the regulatory effects of APOC1 on RCC cell phenotypes. In vivo knockdown of APOC1 in xenografted nude mice slowed down the growth of RCC.

Conclusions

APOC1 stimulates the malignant process of RCC via targeting the Wnt3a signaling.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E, Bowlby R, Gibb EA, Akbani R, Beroukhim R, et al. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018;23(1):313–26.PubMedPubMedCentralCrossRef Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E, Bowlby R, Gibb EA, Akbani R, Beroukhim R, et al. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018;23(1):313–26.PubMedPubMedCentralCrossRef
3.
go back to reference Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.PubMedCrossRef Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.PubMedCrossRef
4.
5.
go back to reference Cavaliere C, D’Aniello C, Pepa CD, Pisconti S, Berretta M, Facchini G. Current and emerging treatments for metastatic renal cell carcinoma. Curr Cancer Drug Targets. 2018;18(5):468–79.PubMedCrossRef Cavaliere C, D’Aniello C, Pepa CD, Pisconti S, Berretta M, Facchini G. Current and emerging treatments for metastatic renal cell carcinoma. Curr Cancer Drug Targets. 2018;18(5):468–79.PubMedCrossRef
6.
go back to reference Miao D, Margolis CA, Vokes NI, Liu D, Taylor-Weiner A, Wankowicz SM, Adeegbe D, Keliher D, Schilling B, Tracy A, et al. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat Genet. 2018;50(9):1271–81.PubMedPubMedCentralCrossRef Miao D, Margolis CA, Vokes NI, Liu D, Taylor-Weiner A, Wankowicz SM, Adeegbe D, Keliher D, Schilling B, Tracy A, et al. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat Genet. 2018;50(9):1271–81.PubMedPubMedCentralCrossRef
7.
go back to reference van der Mijn JC, Mier JW, Broxterman HJ, Verheul HM. Predictive biomarkers in renal cell cancer: insights in drug resistance mechanisms. Drug Resist Updat. 2014;17(4–6):77–88.PubMedCrossRef van der Mijn JC, Mier JW, Broxterman HJ, Verheul HM. Predictive biomarkers in renal cell cancer: insights in drug resistance mechanisms. Drug Resist Updat. 2014;17(4–6):77–88.PubMedCrossRef
8.
go back to reference Jong MC, Hofker MH, Havekes LM. Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol. 1999;19(3):472–84.PubMedCrossRef Jong MC, Hofker MH, Havekes LM. Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol. 1999;19(3):472–84.PubMedCrossRef
9.
go back to reference Ren H, Chen Z, Yang L, Xiong W, Yang H, Xu K, Zhai E, Ding L, He Y, Song X. Apolipoprotein C1 (APOC1) promotes tumor progression via MAPK signaling pathways in colorectal cancer. Cancer Manag Res. 2019;11:4917–30.PubMedPubMedCentralCrossRef Ren H, Chen Z, Yang L, Xiong W, Yang H, Xu K, Zhai E, Ding L, He Y, Song X. Apolipoprotein C1 (APOC1) promotes tumor progression via MAPK signaling pathways in colorectal cancer. Cancer Manag Res. 2019;11:4917–30.PubMedPubMedCentralCrossRef
10.
go back to reference Leduc V, Jasmin-Belanger S, Poirier J. APOE and cholesterol homeostasis in Alzheimer’s disease. Trends Mol Med. 2010;16(10):469–77.PubMedCrossRef Leduc V, Jasmin-Belanger S, Poirier J. APOE and cholesterol homeostasis in Alzheimer’s disease. Trends Mol Med. 2010;16(10):469–77.PubMedCrossRef
11.
go back to reference Su M, Zhou Y, Wang D, Xu T, Chang W, Wang M, Yu X, Feng D, Han Z, Yan W. Expression and purification of recombinant human apolipoprotein C-I in Pichia pastoris. Protein Expr Purif. 2011;78(1):22–6.PubMedCrossRef Su M, Zhou Y, Wang D, Xu T, Chang W, Wang M, Yu X, Feng D, Han Z, Yan W. Expression and purification of recombinant human apolipoprotein C-I in Pichia pastoris. Protein Expr Purif. 2011;78(1):22–6.PubMedCrossRef
12.
go back to reference Yi J, Ren L, Wu J, Li W, Zheng X, Du G, Wang J. Apolipoprotein C1 (APOC1) as a novel diagnostic and prognostic biomarker for gastric cancer. Ann Transl Med. 2019;7(16):380.PubMedPubMedCentralCrossRef Yi J, Ren L, Wu J, Li W, Zheng X, Du G, Wang J. Apolipoprotein C1 (APOC1) as a novel diagnostic and prognostic biomarker for gastric cancer. Ann Transl Med. 2019;7(16):380.PubMedPubMedCentralCrossRef
13.
go back to reference Moore LE, Brennan P, Karami S, Menashe I, Berndt SI, Dong LM, Meisner A, Yeager M, Chanock S, Colt J, et al. Apolipoprotein E/C1 locus variants modify renal cell carcinoma risk. Cancer Res. 2009;69(20):8001–8.PubMedPubMedCentralCrossRef Moore LE, Brennan P, Karami S, Menashe I, Berndt SI, Dong LM, Meisner A, Yeager M, Chanock S, Colt J, et al. Apolipoprotein E/C1 locus variants modify renal cell carcinoma risk. Cancer Res. 2009;69(20):8001–8.PubMedPubMedCentralCrossRef
14.
go back to reference Jong MC, Dahlmans VE, van Gorp PJ, van Dijk KW, Breuer ML, Hofker MH, Havekes LM. In the absence of the low density lipoprotein receptor, human apolipoprotein C1 overexpression in transgenic mice inhibits the hepatic uptake of very low density lipoproteins via a receptor-associated protein-sensitive pathway. J Clin Invest. 1996;98(10):2259–67.PubMedPubMedCentralCrossRef Jong MC, Dahlmans VE, van Gorp PJ, van Dijk KW, Breuer ML, Hofker MH, Havekes LM. In the absence of the low density lipoprotein receptor, human apolipoprotein C1 overexpression in transgenic mice inhibits the hepatic uptake of very low density lipoproteins via a receptor-associated protein-sensitive pathway. J Clin Invest. 1996;98(10):2259–67.PubMedPubMedCentralCrossRef
15.
go back to reference Nusse R, Clevers H. Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169(6):985–99.PubMedCrossRef Nusse R, Clevers H. Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169(6):985–99.PubMedCrossRef
16.
go back to reference Zhang CJ, Zhu N, Liu Z, Shi Z, Long J, Zu XY, Tang ZW, Hu ZY, Liao DF, Qin L. Wnt5a/Ror2 pathway contributes to the regulation of cholesterol homeostasis and inflammatory response in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(2):158547.PubMedCrossRef Zhang CJ, Zhu N, Liu Z, Shi Z, Long J, Zu XY, Tang ZW, Hu ZY, Liao DF, Qin L. Wnt5a/Ror2 pathway contributes to the regulation of cholesterol homeostasis and inflammatory response in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(2):158547.PubMedCrossRef
17.
go back to reference Kitamura H, Takahashi A, Takei F, Hotta H, Miyao N, Shindo T, Igarashi M, Tachiki H, Kunishima Y, Muranaka T, et al. Molecular-targeted therapy and surgery may prolong survival of renal cell carcinoma patients with bone metastasis: a multi-institutional retrospective study in Japan. Anticancer Res. 2016;36(10):5531–6.PubMedCrossRef Kitamura H, Takahashi A, Takei F, Hotta H, Miyao N, Shindo T, Igarashi M, Tachiki H, Kunishima Y, Muranaka T, et al. Molecular-targeted therapy and surgery may prolong survival of renal cell carcinoma patients with bone metastasis: a multi-institutional retrospective study in Japan. Anticancer Res. 2016;36(10):5531–6.PubMedCrossRef
18.
go back to reference Krasteva V, Brodeur MR, Tremblay FL, Falstrault L, Brissette L. Apolipoprotein C-I reduces cholesteryl esters selective uptake from LDL and HDL by binding to HepG2 cells and lipoproteins. Biochim Biophys Acta. 2010;1801(1):42–8.PubMedCrossRef Krasteva V, Brodeur MR, Tremblay FL, Falstrault L, Brissette L. Apolipoprotein C-I reduces cholesteryl esters selective uptake from LDL and HDL by binding to HepG2 cells and lipoproteins. Biochim Biophys Acta. 2010;1801(1):42–8.PubMedCrossRef
19.
go back to reference Cohen M, Yossef R, Erez T, Kugel A, Welt M, Karpasas MM, Bones J, Rudd PM, Taieb J, Boissin H, et al. Serum apolipoproteins C-I and C-III are reduced in stomach cancer patients: results from MALDI-based peptidome and immuno-based clinical assays. PLoS ONE. 2011;6(1):e14540.PubMedPubMedCentralCrossRef Cohen M, Yossef R, Erez T, Kugel A, Welt M, Karpasas MM, Bones J, Rudd PM, Taieb J, Boissin H, et al. Serum apolipoproteins C-I and C-III are reduced in stomach cancer patients: results from MALDI-based peptidome and immuno-based clinical assays. PLoS ONE. 2011;6(1):e14540.PubMedPubMedCentralCrossRef
20.
go back to reference Xue A, Scarlett CJ, Chung L, Butturini G, Scarpa A, Gandy R, Wilson SR, Baxter RC, Smith RC. Discovery of serum biomarkers for pancreatic adenocarcinoma using proteomic analysis. Brit J Cancer. 2010;103(3):391–400.PubMedCrossRef Xue A, Scarlett CJ, Chung L, Butturini G, Scarpa A, Gandy R, Wilson SR, Baxter RC, Smith RC. Discovery of serum biomarkers for pancreatic adenocarcinoma using proteomic analysis. Brit J Cancer. 2010;103(3):391–400.PubMedCrossRef
21.
go back to reference Engwegen JY, Helgason HH, Cats A, Harris N, Bonfrer JM, Schellens JH, Beijnen JH. Identification of serum proteins discriminating colorectal cancer patients and healthy controls using surface-enhanced laser desorption ionisation-time of flight mass spectrometry. World J Gastroenterol. 2006;12(10):1536–44.PubMedPubMedCentralCrossRef Engwegen JY, Helgason HH, Cats A, Harris N, Bonfrer JM, Schellens JH, Beijnen JH. Identification of serum proteins discriminating colorectal cancer patients and healthy controls using surface-enhanced laser desorption ionisation-time of flight mass spectrometry. World J Gastroenterol. 2006;12(10):1536–44.PubMedPubMedCentralCrossRef
22.
go back to reference Fan Y, Shi L, Liu Q, Dong R, Zhang Q, Yang S, Fan Y, Yang H, Wu P, Yu J, et al. Discovery and identification of potential biomarkers of papillary thyroid carcinoma. Mol Cancer. 2009;8:79.PubMedPubMedCentralCrossRef Fan Y, Shi L, Liu Q, Dong R, Zhang Q, Yang S, Fan Y, Yang H, Wu P, Yu J, et al. Discovery and identification of potential biomarkers of papillary thyroid carcinoma. Mol Cancer. 2009;8:79.PubMedPubMedCentralCrossRef
23.
go back to reference Yang Y, Zhao S, Fan Y, Zhao F, Liu Q, Hu W, Liu D, Fan K, Wang J, Wang J. Detection and identification of potential biomarkers of non-small cell lung cancer. Technol Cancer Res Treat. 2009;8(6):455–66.PubMedCrossRef Yang Y, Zhao S, Fan Y, Zhao F, Liu Q, Hu W, Liu D, Fan K, Wang J, Wang J. Detection and identification of potential biomarkers of non-small cell lung cancer. Technol Cancer Res Treat. 2009;8(6):455–66.PubMedCrossRef
24.
go back to reference Su WP, Sun LN, Yang SL, Zhao H, Zeng TY, Wu WZ, Wang D. Apolipoprotein C1 promotes prostate cancer cell proliferation in vitro. J Biochem Mol Toxicol. 2018;32:e22158.PubMedCentralCrossRef Su WP, Sun LN, Yang SL, Zhao H, Zeng TY, Wu WZ, Wang D. Apolipoprotein C1 promotes prostate cancer cell proliferation in vitro. J Biochem Mol Toxicol. 2018;32:e22158.PubMedCentralCrossRef
25.
go back to reference Takano S, Yoshitomi H, Togawa A, Sogawa K, Shida T, Kimura F, Shimizu H, Tomonaga T, Nomura F, Miyazaki M. Apolipoprotein C-1 maintains cell survival by preventing from apoptosis in pancreatic cancer cells. Oncogene. 2008;27(20):2810–22.PubMedCrossRef Takano S, Yoshitomi H, Togawa A, Sogawa K, Shida T, Kimura F, Shimizu H, Tomonaga T, Nomura F, Miyazaki M. Apolipoprotein C-1 maintains cell survival by preventing from apoptosis in pancreatic cancer cells. Oncogene. 2008;27(20):2810–22.PubMedCrossRef
26.
go back to reference Li YL, Wu LW, Zeng LH, Zhang ZY, Wang W, Zhang C, Lin NM. ApoC1 promotes the metastasis of clear cell renal cell carcinoma via activation of STAT3. Oncogene. 2020;39(39):6203–17.PubMedCrossRef Li YL, Wu LW, Zeng LH, Zhang ZY, Wang W, Zhang C, Lin NM. ApoC1 promotes the metastasis of clear cell renal cell carcinoma via activation of STAT3. Oncogene. 2020;39(39):6203–17.PubMedCrossRef
27.
go back to reference Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.PubMedCrossRef Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.PubMedCrossRef
28.
30.
31.
go back to reference Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 2007;13(14):4042–5.PubMedCrossRef Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 2007;13(14):4042–5.PubMedCrossRef
32.
go back to reference Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11(24):3286–305.PubMedCrossRef Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11(24):3286–305.PubMedCrossRef
33.
go back to reference Qiang YW, Walsh K, Yao L, Kedei N, Blumberg PM, Rubin JS, Shaughnessy J Jr, Rudikoff S. Wnts induce migration and invasion of myeloma plasma cells. Blood. 2005;106(5):1786–93.PubMedPubMedCentralCrossRef Qiang YW, Walsh K, Yao L, Kedei N, Blumberg PM, Rubin JS, Shaughnessy J Jr, Rudikoff S. Wnts induce migration and invasion of myeloma plasma cells. Blood. 2005;106(5):1786–93.PubMedPubMedCentralCrossRef
34.
go back to reference Marson A, Foreman R, Chevalier B, Bilodeau S, Kahn M, Young RA, Jaenisch R. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell. 2008;3(2):132–5.PubMedPubMedCentralCrossRef Marson A, Foreman R, Chevalier B, Bilodeau S, Kahn M, Young RA, Jaenisch R. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell. 2008;3(2):132–5.PubMedPubMedCentralCrossRef
35.
go back to reference Kumari S, Puneet, Prasad SB, Yadav SS, Kumar M, Khanna A, Dixit VK, Nath G, Singh S, Narayan G. Cyclin D1 and cyclin E2 are differentially expressed in gastric cancer. Med Oncol. 2016;33(5):40.PubMedCrossRef Kumari S, Puneet, Prasad SB, Yadav SS, Kumar M, Khanna A, Dixit VK, Nath G, Singh S, Narayan G. Cyclin D1 and cyclin E2 are differentially expressed in gastric cancer. Med Oncol. 2016;33(5):40.PubMedCrossRef
36.
go back to reference Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F, Zagozdzon A, Goswami T, Wang YE, Clark AB, et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 2011;474(7350):230–4.PubMedPubMedCentralCrossRef Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F, Zagozdzon A, Goswami T, Wang YE, Clark AB, et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 2011;474(7350):230–4.PubMedPubMedCentralCrossRef
37.
go back to reference Xu X, Liu Z, Tian F, Xu J, Chen Y. Clinical Significance of transcription factor 7 (TCF7) as a prognostic factor in gastric cancer. Med Sci Monit. 2019;25:3957–63.PubMedPubMedCentralCrossRef Xu X, Liu Z, Tian F, Xu J, Chen Y. Clinical Significance of transcription factor 7 (TCF7) as a prognostic factor in gastric cancer. Med Sci Monit. 2019;25:3957–63.PubMedPubMedCentralCrossRef
38.
go back to reference Zhan Y, Feng J, Lu J, Xu L, Wang W, Fan S. Expression of LEF1 and TCF1 (TCF7) proteins associates with clinical progression of nasopharyngeal carcinoma. J Clin Pathol. 2019;72(6):425–30.PubMedCrossRef Zhan Y, Feng J, Lu J, Xu L, Wang W, Fan S. Expression of LEF1 and TCF1 (TCF7) proteins associates with clinical progression of nasopharyngeal carcinoma. J Clin Pathol. 2019;72(6):425–30.PubMedCrossRef
39.
go back to reference Wu B, Chen M, Gao M, Cong Y, Jiang L, Wei J, Huang J. Down-regulation of lncTCF7 inhibits cell migration and invasion in colorectal cancer via inhibiting TCF7 expression. Hum Cell. 2019;32(1):31–40.PubMedCrossRef Wu B, Chen M, Gao M, Cong Y, Jiang L, Wei J, Huang J. Down-regulation of lncTCF7 inhibits cell migration and invasion in colorectal cancer via inhibiting TCF7 expression. Hum Cell. 2019;32(1):31–40.PubMedCrossRef
Metadata
Title
Apolipoprotein C1 stimulates the malignant process of renal cell carcinoma via the Wnt3a signaling
Authors
Hao Jiang
Jing-Yuan Tang
Dong Xue
Yi-Meng Chen
Ting-Chun Wu
Qian-Feng Zhuang
Xiao-Zhou He
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2021
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01713-x

Other articles of this Issue 1/2021

Cancer Cell International 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine