Skip to main content
Top
Published in: Molecular Cancer 1/2024

Open Access 01-12-2024 | Kidney Cancer | Research

A novel peptide PDHK1-241aa encoded by circPDHK1 promotes ccRCC progression via interacting with PPP1CA to inhibit AKT dephosphorylation and activate the AKT-mTOR signaling pathway

Authors: Bo Huang, Junwu Ren, Qiang Ma, Feifei Yang, Xiaojuan Pan, Yuying Zhang, Yuying Liu, Cong Wang, Dawei Zhang, Ling Wei, Lingyu Ran, Hongwen Zhao, Ce Liang, Xiaolin Wang, Shiming Wang, Haiping Li, Hao Ning, Ai Ran, Wei Li, Yongquan Wang, Bin Xiao

Published in: Molecular Cancer | Issue 1/2024

Login to get access

Abstract

Background

Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer with high aggressive phenotype and poor prognosis. Accumulating evidence suggests that circRNAs have been identified as pivotal mediators in cancers. However, the role of circRNAs in ccRCC progression remains elusive.

Methods

The differentially expressed circRNAs in 4 paired human ccRCC and adjacent noncancerous tissues ccRCC were screened using circRNA microarrays and the candidate target was selected based on circRNA expression level using weighted gene correlation network analysis (WGCNA) and the gene expression omnibus (GEO) database. CircPDHK1 expression in ccRCC and adjacent noncancerous tissues (n = 148) were evaluated along with clinically relevant information. RT-qPCR, RNase R digestion, and actinomycin D (ActD) stability test were conducted to identify the characteristics of circPDHK1. The subcellular distribution of circPDHK1 was analyzed by subcellular fractionation assay and fluorescence in situ hybridization (FISH). Immunoprecipitation-mass spectrometry (IP-MS) and immunofluorescence (IF) were employed to evaluate the protein-coding ability of circPDHK1. ccRCC cells were transfected with siRNAs, plasmids or lentivirus approach, and cell proliferation, migration and invasion, as well as tumorigenesis and metastasis in nude mice were assessed to clarify the functional roles of circPDHK1 and its encoded peptide PDHK1-241aa. RNA-sequencing, western blot analysis, immunoprecipitation (IP) and chromatin immunoprecipitation (ChIP) assays were further employed to identify the underlying mechanisms regulated by PDHK1-241aa.

Results

CircPDHK1 was upregulated in ccRCC tissues and closely related to WHO/ISUP stage, T stage, distant metastasis, VHL mutation and Ki-67 levels. CircPDHK1 had a functional internal ribosome entry site (IRES) and encoded a novel peptide PDHK1-241aa. Functionally, we confirmed that PDHK1-241aa and not the circPDHK1 promoted the proliferation, migration and invasion of ccRCC. Mechanistically, circPDHK1 was activated by HIF-2A at the transcriptional level. PDHK1-241aa was upregulated and interacted with PPP1CA, causing the relocation of PPP1CA to the nucleus. This thereby inhibited AKT dephosphorylation and activated the AKT-mTOR signaling pathway.

Conclusions

Our data indicated that circPDHK1-encoded PDHK1-241aa promotes ccRCC progression by interacting with PPP1CA to inhibit AKT dephosphorylation. This study provides novel insights into the multiplicity of circRNAs and highlights the potential use of circPDHK1 or PDHK1-241aa as a therapeutic target for ccRCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang X, Zhang G, Xu L, Bai X, Zhang J, Chen L, et al. Prediction of World Health Organization /International Society of Urological Pathology (WHO/ISUP) pathological grading of clear cell renal cell carcinoma by dual-layer spectral CT. Acad Radiol. 2023;30:2321–8. Zhang X, Zhang G, Xu L, Bai X, Zhang J, Chen L, et al. Prediction of World Health Organization /International Society of Urological Pathology (WHO/ISUP) pathological grading of clear cell renal cell carcinoma by dual-layer spectral CT. Acad Radiol. 2023;30:2321–8.
2.
go back to reference Zhang L, Jin GZ, Li D. Tat-hspb1 suppresses Clear Cell Renal Cell Carcinoma (ccRCC) growth via Lysosomal membrane permeabilization. Cancers (Basel). 2022;14:5710.PubMedCrossRef Zhang L, Jin GZ, Li D. Tat-hspb1 suppresses Clear Cell Renal Cell Carcinoma (ccRCC) growth via Lysosomal membrane permeabilization. Cancers (Basel). 2022;14:5710.PubMedCrossRef
3.
go back to reference Chen YW, Rini BI, Beckermann KE. Emerging targets in clear cell renal cell carcinoma. Cancers (Basel). 2022;14:4843.PubMedCrossRef Chen YW, Rini BI, Beckermann KE. Emerging targets in clear cell renal cell carcinoma. Cancers (Basel). 2022;14:4843.PubMedCrossRef
4.
go back to reference Li YZ, Lih TSM, Dhanasekaran SM, Mannan R, Chen LJ, Cieslik M, Wu YG, Lu RJH, Clark DJ, Koodziejczak I, et al. Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness. Cancer Cell. 2023;41:139.PubMedCrossRef Li YZ, Lih TSM, Dhanasekaran SM, Mannan R, Chen LJ, Cieslik M, Wu YG, Lu RJH, Clark DJ, Koodziejczak I, et al. Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness. Cancer Cell. 2023;41:139.PubMedCrossRef
5.
go back to reference Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to systemic therapies in clear cell renal cell carcinoma: mechanisms and management strategies. Mol Cancer Ther. 2018;17:1355–64.PubMedPubMedCentralCrossRef Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to systemic therapies in clear cell renal cell carcinoma: mechanisms and management strategies. Mol Cancer Ther. 2018;17:1355–64.PubMedPubMedCentralCrossRef
6.
go back to reference Li J, Sun D, Pu WC, Wang J, Peng Y. Circular RNAs in Cancer: Biogenesis, function, and clinical significance. Trends in Cancer. 2020;6:319–36.PubMedCrossRef Li J, Sun D, Pu WC, Wang J, Peng Y. Circular RNAs in Cancer: Biogenesis, function, and clinical significance. Trends in Cancer. 2020;6:319–36.PubMedCrossRef
7.
go back to reference Li X, Yang L, Chen LL. The Biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71:428–42.PubMedCrossRef Li X, Yang L, Chen LL. The Biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71:428–42.PubMedCrossRef
8.
go back to reference Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications. Cell. 2022;185:2016–34.PubMedCrossRef Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications. Cell. 2022;185:2016–34.PubMedCrossRef
10.
go back to reference Gui CP, Liao B, Luo CG, Chen YH, Tan L, Tang YM, Li JY, Hou Y, Song HD, Lin HS, et al. circCHST15 is a novel prognostic biomarker that promotes clear cell renal cell carcinoma cell proliferation and metastasis through the miR-125a-5p/EIF4EBP1 axis. Mol Cancer. 2021;20:169.PubMedPubMedCentralCrossRef Gui CP, Liao B, Luo CG, Chen YH, Tan L, Tang YM, Li JY, Hou Y, Song HD, Lin HS, et al. circCHST15 is a novel prognostic biomarker that promotes clear cell renal cell carcinoma cell proliferation and metastasis through the miR-125a-5p/EIF4EBP1 axis. Mol Cancer. 2021;20:169.PubMedPubMedCentralCrossRef
11.
go back to reference Pan X, Huang B, Ma Q, Ren J, Liu Y, Wang C, Zhang D, Fu J, Ran L, Yu T, et al. Circular RNA circ-TNPO3 inhibits clear cell renal cell carcinoma metastasis by binding to IGF2BP2 and destabilizing SERPINH1 mRNA. Clin Transl Med. 2022;12: e994.PubMedPubMedCentralCrossRef Pan X, Huang B, Ma Q, Ren J, Liu Y, Wang C, Zhang D, Fu J, Ran L, Yu T, et al. Circular RNA circ-TNPO3 inhibits clear cell renal cell carcinoma metastasis by binding to IGF2BP2 and destabilizing SERPINH1 mRNA. Clin Transl Med. 2022;12: e994.PubMedPubMedCentralCrossRef
12.
go back to reference Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang H, Song X, Han D, Wang X, Liu Y, et al. circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol Ther. 2022;30:415–30.PubMedCrossRef Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang H, Song X, Han D, Wang X, Liu Y, et al. circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol Ther. 2022;30:415–30.PubMedCrossRef
13.
go back to reference Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC, Liang H, Mei J, Han K, Xiang ZC, Wang FW, et al. A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer. 2022;21:93.PubMedPubMedCentralCrossRef Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC, Liang H, Mei J, Han K, Xiang ZC, Wang FW, et al. A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer. 2022;21:93.PubMedPubMedCentralCrossRef
14.
go back to reference Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, Han K, Chen JW, Judde JG, Deas O, et al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10:4695.PubMedPubMedCentralCrossRefADS Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, Han K, Chen JW, Judde JG, Deas O, et al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10:4695.PubMedPubMedCentralCrossRefADS
15.
go back to reference Qu Y, Feng J, Wu X, Bai L, Xu W, Zhu L, Liu Y, Xu F, Zhang X, Yang G, et al. A proteogenomic analysis of clear cell renal cell carcinoma in a Chinese population. Nat Commun. 2022;13:2052.PubMedPubMedCentralCrossRefADS Qu Y, Feng J, Wu X, Bai L, Xu W, Zhu L, Liu Y, Xu F, Zhang X, Yang G, et al. A proteogenomic analysis of clear cell renal cell carcinoma in a Chinese population. Nat Commun. 2022;13:2052.PubMedPubMedCentralCrossRefADS
16.
go back to reference Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, Liu XD, Jonasch E, Xie L, Chen X, et al. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science. 2018;361:290–5.PubMedPubMedCentralCrossRefADS Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, Liu XD, Jonasch E, Xie L, Chen X, et al. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science. 2018;361:290–5.PubMedPubMedCentralCrossRefADS
17.
go back to reference Hsieh JJ, Le VH, Oyama T, Ricketts CJ, Ho TH, Cheng EH. Chromosome 3p loss-orchestrated VHL, HIF, and epigenetic deregulation in Clear Cell Renal Cell Carcinoma. J Clin Oncol. 2018;36:JCO2018792549.PubMedCrossRef Hsieh JJ, Le VH, Oyama T, Ricketts CJ, Ho TH, Cheng EH. Chromosome 3p loss-orchestrated VHL, HIF, and epigenetic deregulation in Clear Cell Renal Cell Carcinoma. J Clin Oncol. 2018;36:JCO2018792549.PubMedCrossRef
18.
go back to reference Frew IJ, Moch H. A clearer view of the molecular complexity of clear cell renal cell carcinoma. Annu Rev Pathol. 2015;10:263–89.PubMedCrossRef Frew IJ, Moch H. A clearer view of the molecular complexity of clear cell renal cell carcinoma. Annu Rev Pathol. 2015;10:263–89.PubMedCrossRef
19.
go back to reference Stransky LA, Vigeant SM, Huang B, West D, Denize T, Walton E, Signoretti S, Kaelin WG Jr. Sensitivity of VHL mutant kidney cancers to HIF2 inhibitors does not require an intact p53 pathway. Proc Natl Acad Sci U S A. 2022;119: e2120403119.PubMedPubMedCentralCrossRef Stransky LA, Vigeant SM, Huang B, West D, Denize T, Walton E, Signoretti S, Kaelin WG Jr. Sensitivity of VHL mutant kidney cancers to HIF2 inhibitors does not require an intact p53 pathway. Proc Natl Acad Sci U S A. 2022;119: e2120403119.PubMedPubMedCentralCrossRef
20.
go back to reference Hoefflin R, Harlander S, Schafer S, Metzger P, Kuo F, Schonenberger D, Adlesic M, Peighambari A, Seidel P, Chen CY, et al. HIF-1alpha and HIF-2alpha differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat Commun. 2020;11:4111.PubMedPubMedCentralCrossRefADS Hoefflin R, Harlander S, Schafer S, Metzger P, Kuo F, Schonenberger D, Adlesic M, Peighambari A, Seidel P, Chen CY, et al. HIF-1alpha and HIF-2alpha differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat Commun. 2020;11:4111.PubMedPubMedCentralCrossRefADS
21.
go back to reference Xiong ZY, Xiong W, Xiao W, Yuan CF, Shi J, Huang Y, Wang C, Meng XG, Chen ZX, Yang HM, et al. NNT-induced tumor cell “slimming” reverses the pro-carcinogenesis effect of HIF2a in tumors. Clin Translational Med. 2021;11:e264.CrossRef Xiong ZY, Xiong W, Xiao W, Yuan CF, Shi J, Huang Y, Wang C, Meng XG, Chen ZX, Yang HM, et al. NNT-induced tumor cell “slimming” reverses the pro-carcinogenesis effect of HIF2a in tumors. Clin Translational Med. 2021;11:e264.CrossRef
22.
go back to reference Liao M, Li YY, Xiao AH, Lu QL, Zeng H, Qin H, Zheng EZ, Luo XQ, Chen L, Ruan XZ, et al. HIF-2α-induced upregulation of CD36 promotes the development of ccRCC. Exp Cell Res. 2022;421:113389.PubMedCrossRef Liao M, Li YY, Xiao AH, Lu QL, Zeng H, Qin H, Zheng EZ, Luo XQ, Chen L, Ruan XZ, et al. HIF-2α-induced upregulation of CD36 promotes the development of ccRCC. Exp Cell Res. 2022;421:113389.PubMedCrossRef
23.
24.
go back to reference McMahon KA, Wu Y, Gambin Y, Sierecki E, Tillu VA, Hall T, Martel N, Okano S, Moradi SV, Ruelcke JE, et al. Identification of intracellular cavin target proteins reveals cavin-PP1alpha interactions regulate apoptosis. Nat Commun. 2019;10:3279.PubMedPubMedCentralCrossRefADS McMahon KA, Wu Y, Gambin Y, Sierecki E, Tillu VA, Hall T, Martel N, Okano S, Moradi SV, Ruelcke JE, et al. Identification of intracellular cavin target proteins reveals cavin-PP1alpha interactions regulate apoptosis. Nat Commun. 2019;10:3279.PubMedPubMedCentralCrossRefADS
25.
go back to reference Matos B, Howl J, Jerónimo C, Fardilha M. Modulation of serine/threonine-protein phosphatase 1 (PP1) complexes: a promising approach in cancer treatment. Drug Discovery Today. 2021;26:2680–98.PubMedCrossRef Matos B, Howl J, Jerónimo C, Fardilha M. Modulation of serine/threonine-protein phosphatase 1 (PP1) complexes: a promising approach in cancer treatment. Drug Discovery Today. 2021;26:2680–98.PubMedCrossRef
26.
go back to reference Chen M, Wan L, Zhang J, Zhang J, Mendez L, Clohessy JG, Berry K, Victor J, Yin Q, Zhu Y, et al. Deregulated PP1alpha phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism. Nat Commun. 2018;9:159.PubMedPubMedCentralCrossRefADS Chen M, Wan L, Zhang J, Zhang J, Mendez L, Clohessy JG, Berry K, Victor J, Yin Q, Zhu Y, et al. Deregulated PP1alpha phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism. Nat Commun. 2018;9:159.PubMedPubMedCentralCrossRefADS
27.
go back to reference Xiao L, Gong LL, Yuan D, Deng M, Zeng XM, Chen LL, Zhang L, Yan Q, Liu JP, Hu XH, et al. Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation. Cell Death Differ. 2010;17:1448–62.PubMedCrossRef Xiao L, Gong LL, Yuan D, Deng M, Zeng XM, Chen LL, Zhang L, Yan Q, Liu JP, Hu XH, et al. Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation. Cell Death Differ. 2010;17:1448–62.PubMedCrossRef
28.
go back to reference Tian B, Liu J, Zhang N, Song Y, Xu Y, Xie M, Wang B, Hua H, Shen Y, Li Y, Yang M. Oncogenic SNORD12B activates the AKT-mTOR-4EBP1 signaling in esophageal squamous cell carcinoma via nucleus partitioning of PP-1alpha. Oncogene. 2021;40:3734–47.PubMedCrossRef Tian B, Liu J, Zhang N, Song Y, Xu Y, Xie M, Wang B, Hua H, Shen Y, Li Y, Yang M. Oncogenic SNORD12B activates the AKT-mTOR-4EBP1 signaling in esophageal squamous cell carcinoma via nucleus partitioning of PP-1alpha. Oncogene. 2021;40:3734–47.PubMedCrossRef
29.
go back to reference Wang P, Jin JM, Liang XH, Yu MZ, Yang C, Huang F, Wu H, Zhang BB, Fei XY, Wang ZT, et al. Helichrysetin inhibits gastric cancer growth by targeting c-Myc/PDHK1 axis-mediated energy metabolism reprogramming. Acta Pharmacol Sin. 2022;43:1581–93.PubMedCrossRef Wang P, Jin JM, Liang XH, Yu MZ, Yang C, Huang F, Wu H, Zhang BB, Fei XY, Wang ZT, et al. Helichrysetin inhibits gastric cancer growth by targeting c-Myc/PDHK1 axis-mediated energy metabolism reprogramming. Acta Pharmacol Sin. 2022;43:1581–93.PubMedCrossRef
30.
go back to reference Ruiz NPE, Mohan V, Wu JH, Scott S, Kreamer M, Benej M, Golias T, Papandreou I, Denko NC. Dynamic regulation of mitochondrial pyruvate metabolism is necessary for orthotopic pancreatic tumor growth. Cancer Metabolism. 2021;9:39.CrossRef Ruiz NPE, Mohan V, Wu JH, Scott S, Kreamer M, Benej M, Golias T, Papandreou I, Denko NC. Dynamic regulation of mitochondrial pyruvate metabolism is necessary for orthotopic pancreatic tumor growth. Cancer Metabolism. 2021;9:39.CrossRef
31.
go back to reference Zhu Q, Zhong AL, Hu H, Zhao JJ, Weng DS, Tang Y, Pan QZ, Zhou ZQ, Song MJ, Yang JY, et al. Acylglycerol kinase promotes tumour growth and metastasis via activating the PI3K/AKT/GSK3β signalling pathway in renal cell carcinoma. J Hemat Oncol. 2020;13:2. Zhu Q, Zhong AL, Hu H, Zhao JJ, Weng DS, Tang Y, Pan QZ, Zhou ZQ, Song MJ, Yang JY, et al. Acylglycerol kinase promotes tumour growth and metastasis via activating the PI3K/AKT/GSK3β signalling pathway in renal cell carcinoma. J Hemat Oncol. 2020;13:2.
32.
go back to reference Ma Q, Yang F, Huang B, Pan X, Li W, Yu T, Wang X, Ran L, Qian K, Li H, et al. CircARID1A binds to IGF2BP3 in gastric cancer and promotes cancer proliferation by forming a circARID1A-IGF2BP3-SLC7A5 RNA-protein ternary complex. J Exp Clin Cancer Res. 2022;41:251.PubMedPubMedCentralCrossRef Ma Q, Yang F, Huang B, Pan X, Li W, Yu T, Wang X, Ran L, Qian K, Li H, et al. CircARID1A binds to IGF2BP3 in gastric cancer and promotes cancer proliferation by forming a circARID1A-IGF2BP3-SLC7A5 RNA-protein ternary complex. J Exp Clin Cancer Res. 2022;41:251.PubMedPubMedCentralCrossRef
33.
go back to reference Karami Fath M, Akhavan Masouleh R, Afifi N, Loghmani S, Tamimi P, Fazeli A, Mousavian SA, Falsafi MM, Barati G. PI3K/AKT/mTOR signaling pathway modulation by circular RNAs in breast cancer progression. Pathol Res Pract. 2022;241:154279.PubMedCrossRef Karami Fath M, Akhavan Masouleh R, Afifi N, Loghmani S, Tamimi P, Fazeli A, Mousavian SA, Falsafi MM, Barati G. PI3K/AKT/mTOR signaling pathway modulation by circular RNAs in breast cancer progression. Pathol Res Pract. 2022;241:154279.PubMedCrossRef
34.
go back to reference Wu W, Chen X, Liu X, Bao HJ, Li QH, et al. SNORD60 promotes the tumorigenesis and progression of endometrial cancer through binding PIK3CA and regulating PI3K/AKT/mTOR signaling pathway. Mol Carcinog. 2023;62:413–26. Wu W, Chen X, Liu X, Bao HJ, Li QH, et al. SNORD60 promotes the tumorigenesis and progression of endometrial cancer through binding PIK3CA and regulating PI3K/AKT/mTOR signaling pathway. Mol Carcinog. 2023;62:413–26.
35.
go back to reference Sun Y, Zhu L, Liu P, Zhang H, Guo F, Jin X. ZDHHC2-Mediated AGK palmitoylation activates AKT-mTOR signaling to reduce Sunitinib Sensitivity in Renal Cell Carcinoma. Cancer Res. 2023;83:2034–51.PubMedPubMedCentralCrossRef Sun Y, Zhu L, Liu P, Zhang H, Guo F, Jin X. ZDHHC2-Mediated AGK palmitoylation activates AKT-mTOR signaling to reduce Sunitinib Sensitivity in Renal Cell Carcinoma. Cancer Res. 2023;83:2034–51.PubMedPubMedCentralCrossRef
36.
go back to reference Lin J, Wang X, Zhai S, Shi M, Peng C, Deng X, Fu D, Wang J, Shen B. Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1. J Hematol Oncol. 2022;15:128.PubMedPubMedCentralCrossRef Lin J, Wang X, Zhai S, Shi M, Peng C, Deng X, Fu D, Wang J, Shen B. Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1. J Hematol Oncol. 2022;15:128.PubMedPubMedCentralCrossRef
37.
go back to reference Wolf C, Smith S, van Wijk SJL. Zafirlukast induces VHL- and HIF-2alpha-Dependent oxidative cell death in 786-O clear cell renal carcinoma cells. Int J Mol Sci. 2022;23:3567.PubMedPubMedCentralCrossRef Wolf C, Smith S, van Wijk SJL. Zafirlukast induces VHL- and HIF-2alpha-Dependent oxidative cell death in 786-O clear cell renal carcinoma cells. Int J Mol Sci. 2022;23:3567.PubMedPubMedCentralCrossRef
38.
go back to reference He Y, Yang D, Li Y, Xiang J, Wang L, Wang Y. Circular RNA-related CeRNA network and prognostic signature for patients with oral squamous cell carcinoma. Front Pharmacol. 2022;13: 949713.PubMedPubMedCentralCrossRef He Y, Yang D, Li Y, Xiang J, Wang L, Wang Y. Circular RNA-related CeRNA network and prognostic signature for patients with oral squamous cell carcinoma. Front Pharmacol. 2022;13: 949713.PubMedPubMedCentralCrossRef
39.
go back to reference Li J, Ye Z, Hu X, Hou S, Hang Q. Prognostic, Diagnostic, and Clinicopathological significance of circular RNAs in pancreatic Cancer: a systematic review and Meta-analysis. Cancers (Basel). 2022;14:6187.PubMedCrossRef Li J, Ye Z, Hu X, Hou S, Hang Q. Prognostic, Diagnostic, and Clinicopathological significance of circular RNAs in pancreatic Cancer: a systematic review and Meta-analysis. Cancers (Basel). 2022;14:6187.PubMedCrossRef
40.
go back to reference Zou J, Lan H, Li W, Xie S, Tong Z, Song X, Wang C. Comprehensive analysis of circular RNA expression profiles in Gefitinib-resistant lung adenocarcinoma patients. Technol Cancer Res Treat. 2022;21:15330338221139168.PubMedPubMedCentralCrossRef Zou J, Lan H, Li W, Xie S, Tong Z, Song X, Wang C. Comprehensive analysis of circular RNA expression profiles in Gefitinib-resistant lung adenocarcinoma patients. Technol Cancer Res Treat. 2022;21:15330338221139168.PubMedPubMedCentralCrossRef
41.
go back to reference Zhang MX, Wang JL, Mo CQ, Mao XP, Feng ZH, Li JY, Lin HS, Song HD, Xu QH, Wang YH, et al. CircME1 promotes aerobic glycolysis and sunitinib resistance of clear cell renal cell carcinoma through cis-regulation of ME1. Oncogene. 2022;41:3979–90.PubMedPubMedCentralCrossRef Zhang MX, Wang JL, Mo CQ, Mao XP, Feng ZH, Li JY, Lin HS, Song HD, Xu QH, Wang YH, et al. CircME1 promotes aerobic glycolysis and sunitinib resistance of clear cell renal cell carcinoma through cis-regulation of ME1. Oncogene. 2022;41:3979–90.PubMedPubMedCentralCrossRef
42.
go back to reference Chen Z, Zheng Z, Xie Y, Zhong Q, Shangguan W, Zhang Y, Zhu D, Xie W. Circular RNA circPPP6R3 upregulates CD44 to promote the progression of clear cell renal cell carcinoma via sponging miR-1238-3p. Cell Death Dis. 2021;13:22.PubMedPubMedCentralCrossRef Chen Z, Zheng Z, Xie Y, Zhong Q, Shangguan W, Zhang Y, Zhu D, Xie W. Circular RNA circPPP6R3 upregulates CD44 to promote the progression of clear cell renal cell carcinoma via sponging miR-1238-3p. Cell Death Dis. 2021;13:22.PubMedPubMedCentralCrossRef
43.
go back to reference Huang Z, Ding Y, Zhang L, He S, Jia Z, Gu C, Wang T, Li H, Li X, Jin Z, et al. Upregulated circPDK1 promotes RCC cell migration and invasion by regulating the Mir-377-3P-NOTCH1 axis in renal cell carcinoma. Onco Targets Ther. 2020;13:11237–52.PubMedPubMedCentralCrossRef Huang Z, Ding Y, Zhang L, He S, Jia Z, Gu C, Wang T, Li H, Li X, Jin Z, et al. Upregulated circPDK1 promotes RCC cell migration and invasion by regulating the Mir-377-3P-NOTCH1 axis in renal cell carcinoma. Onco Targets Ther. 2020;13:11237–52.PubMedPubMedCentralCrossRef
44.
go back to reference Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19:188–206.PubMedCrossRef Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19:188–206.PubMedCrossRef
45.
go back to reference Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.PubMedCrossRef Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.PubMedCrossRef
46.
47.
go back to reference Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin D, Liu J, Sun Z. The role of N(6)-methyladenosine (m(6)A) modification in the regulation of circRNAs. Mol Cancer. 2020;19:105.PubMedPubMedCentralCrossRef Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin D, Liu J, Sun Z. The role of N(6)-methyladenosine (m(6)A) modification in the regulation of circRNAs. Mol Cancer. 2020;19:105.PubMedPubMedCentralCrossRef
48.
go back to reference Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al. Translation of CircRNAs. Mol Cell. 2017;66:9-21 e27.PubMedPubMedCentralCrossRef Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al. Translation of CircRNAs. Mol Cell. 2017;66:9-21 e27.PubMedPubMedCentralCrossRef
49.
go back to reference Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 2017;27:626–41.PubMedPubMedCentralCrossRef Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 2017;27:626–41.PubMedPubMedCentralCrossRef
50.
go back to reference Li J, Ma M, Yang X, Zhang M, Luo J, Zhou H, Huang N, Xiao F, Lai B, Lv W, Zhang N. Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol Cancer. 2020;19:142.PubMedPubMedCentralCrossRef Li J, Ma M, Yang X, Zhang M, Luo J, Zhou H, Huang N, Xiao F, Lai B, Lv W, Zhang N. Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol Cancer. 2020;19:142.PubMedPubMedCentralCrossRef
51.
go back to reference Wang X, Jian W, Luo Q, Fang L. CircSEMA4B inhibits the progression of breast cancer by encoding a novel protein SEMA4B-211aa and regulating AKT phosphorylation. Cell Death Dis. 2022;13:794.PubMedPubMedCentralCrossRef Wang X, Jian W, Luo Q, Fang L. CircSEMA4B inhibits the progression of breast cancer by encoding a novel protein SEMA4B-211aa and regulating AKT phosphorylation. Cell Death Dis. 2022;13:794.PubMedPubMedCentralCrossRef
52.
go back to reference Chen H, Zhu T, Huang X, Xu W, Di Z, Ma Y, Xue M, Bi S, Shen Y, Yu Y, et al. Xanthatin suppresses proliferation and tumorigenicity of glioma cells through autophagy inhibition via activation of the PI3K-Akt-mTOR pathway. Pharmacol Res Perspect. 2023;11:e1041.PubMedCrossRef Chen H, Zhu T, Huang X, Xu W, Di Z, Ma Y, Xue M, Bi S, Shen Y, Yu Y, et al. Xanthatin suppresses proliferation and tumorigenicity of glioma cells through autophagy inhibition via activation of the PI3K-Akt-mTOR pathway. Pharmacol Res Perspect. 2023;11:e1041.PubMedCrossRef
53.
go back to reference Dorjsembe B, Joo H, Nho C, Ham J, Kim JC. Aruncus dioicus var. Kamtschaticus Extract ameliorates psoriasis-like skin inflammation via Akt/mTOR and JAK2/STAT3 signaling pathways in a murine model. Nutrients. 2022;14:5094.PubMedPubMedCentralCrossRef Dorjsembe B, Joo H, Nho C, Ham J, Kim JC. Aruncus dioicus var. Kamtschaticus Extract ameliorates psoriasis-like skin inflammation via Akt/mTOR and JAK2/STAT3 signaling pathways in a murine model. Nutrients. 2022;14:5094.PubMedPubMedCentralCrossRef
54.
go back to reference Cho H, Abshire ET, Popp MW, Proschel C, Schwartz JL, Yeo GW, Maquat LE. AKT constitutes a signal-promoted alternative exon-junction complex that regulates nonsense-mediated mRNA decay. Mol Cell. 2022;82:2779-2796 e2710.PubMedPubMedCentralCrossRef Cho H, Abshire ET, Popp MW, Proschel C, Schwartz JL, Yeo GW, Maquat LE. AKT constitutes a signal-promoted alternative exon-junction complex that regulates nonsense-mediated mRNA decay. Mol Cell. 2022;82:2779-2796 e2710.PubMedPubMedCentralCrossRef
55.
go back to reference Codenotti S, Zizioli D, Mignani L, Rezzola S, Tabellini G, Parolini S, Giacomini A, Asperti M, Poli M, Mandracchia D, et al. Hyperactive Akt1 signaling increases tumor progression and DNA repair in embryonal Rhabdomyosarcoma RD line and confers susceptibility to Glycolysis and Mevalonate pathway inhibitors. Cells. 2022;11:2859.PubMedPubMedCentralCrossRef Codenotti S, Zizioli D, Mignani L, Rezzola S, Tabellini G, Parolini S, Giacomini A, Asperti M, Poli M, Mandracchia D, et al. Hyperactive Akt1 signaling increases tumor progression and DNA repair in embryonal Rhabdomyosarcoma RD line and confers susceptibility to Glycolysis and Mevalonate pathway inhibitors. Cells. 2022;11:2859.PubMedPubMedCentralCrossRef
56.
go back to reference Chu N, Viennet T, Bae H, Salguero A, Boeszoermenyi A, Arthanari H, Cole PA. The structural determinants of PH domain-mediated regulation of akt revealed by segmental labeling. Elife. 2020;9:9.CrossRef Chu N, Viennet T, Bae H, Salguero A, Boeszoermenyi A, Arthanari H, Cole PA. The structural determinants of PH domain-mediated regulation of akt revealed by segmental labeling. Elife. 2020;9:9.CrossRef
57.
58.
go back to reference Yang KJ, Piao L, Shin S, Shin SY, Li Y, Lee H, Tran Q, Park J, Hong S, Brazil DP, et al. Modulation of PI3K/PTEN pathway does not affect Catalytic Activity of PDK1 in Jurkat cells. Anticancer Res. 2017;37:5415–23.PubMed Yang KJ, Piao L, Shin S, Shin SY, Li Y, Lee H, Tran Q, Park J, Hong S, Brazil DP, et al. Modulation of PI3K/PTEN pathway does not affect Catalytic Activity of PDK1 in Jurkat cells. Anticancer Res. 2017;37:5415–23.PubMed
59.
go back to reference Korrodi-Gregorio L, Silva JV, Santos-Sousa L, Freitas MJ, Felgueiras J, Fardilha M. TGF-beta cascade regulation by PPP1 and its interactors -impact on prostate cancer development and therapy. J Cell Mol Med. 2014;18:555–67.PubMedPubMedCentralCrossRef Korrodi-Gregorio L, Silva JV, Santos-Sousa L, Freitas MJ, Felgueiras J, Fardilha M. TGF-beta cascade regulation by PPP1 and its interactors -impact on prostate cancer development and therapy. J Cell Mol Med. 2014;18:555–67.PubMedPubMedCentralCrossRef
60.
go back to reference Addison WN, Pellicelli M, St-Arnaud R. Dephosphorylation of the transcriptional cofactor NACA by the PP1A phosphatase enhances cJUN transcriptional activity and osteoblast differentiation. J Biol Chem. 2019;294:8184–96.PubMedPubMedCentralCrossRef Addison WN, Pellicelli M, St-Arnaud R. Dephosphorylation of the transcriptional cofactor NACA by the PP1A phosphatase enhances cJUN transcriptional activity and osteoblast differentiation. J Biol Chem. 2019;294:8184–96.PubMedPubMedCentralCrossRef
61.
go back to reference Jerome M, Paudel HK. 14-3-3zeta regulates nuclear trafficking of protein phosphatase 1alpha (PP1alpha) in HEK-293 cells. Arch Biochem Biophys. 2014;558:28–35.PubMedCrossRef Jerome M, Paudel HK. 14-3-3zeta regulates nuclear trafficking of protein phosphatase 1alpha (PP1alpha) in HEK-293 cells. Arch Biochem Biophys. 2014;558:28–35.PubMedCrossRef
62.
go back to reference Xu ZP, Liu M, Wang J, Liu K, Xu LY, Fan DM, Zhang H, Hu WX, Wei D, Wang JN. Single-cell RNA-sequencing analysis reveals MYH9 promotes renal cell carcinoma development and sunitinib resistance via AKT signaling pathway. Cell Death Discovery. 2022;8:125.PubMedPubMedCentralCrossRef Xu ZP, Liu M, Wang J, Liu K, Xu LY, Fan DM, Zhang H, Hu WX, Wei D, Wang JN. Single-cell RNA-sequencing analysis reveals MYH9 promotes renal cell carcinoma development and sunitinib resistance via AKT signaling pathway. Cell Death Discovery. 2022;8:125.PubMedPubMedCentralCrossRef
63.
go back to reference Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications. Cell. 2022;185:2390.PubMedCrossRef Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications. Cell. 2022;185:2390.PubMedCrossRef
66.
go back to reference Lyu L, Zhang S, Deng Y, Wang M, Deng X, Yang S, Wu Y, Dai Z. Regulatory mechanisms, functions, and clinical significance of CircRNAs in triple-negative breast cancer. J Hematol Oncol. 2021;14:41.PubMedPubMedCentralCrossRef Lyu L, Zhang S, Deng Y, Wang M, Deng X, Yang S, Wu Y, Dai Z. Regulatory mechanisms, functions, and clinical significance of CircRNAs in triple-negative breast cancer. J Hematol Oncol. 2021;14:41.PubMedPubMedCentralCrossRef
67.
go back to reference Meng J, Chen S, Han JX, Qian B, Wang XR, Zhong WL, Qin Y, Zhang H, Gao WF, Lei YY, et al. Twist1 regulates Vimentin through Cul2 circular RNA to promote EMT in Hepatocellular Carcinoma. Cancer Res. 2018;78:4150–62.PubMedCrossRef Meng J, Chen S, Han JX, Qian B, Wang XR, Zhong WL, Qin Y, Zhang H, Gao WF, Lei YY, et al. Twist1 regulates Vimentin through Cul2 circular RNA to promote EMT in Hepatocellular Carcinoma. Cancer Res. 2018;78:4150–62.PubMedCrossRef
68.
go back to reference Liu Y, Li Z, Zhang M, Zhou H, Wu X, Zhong J, Xiao F, Huang N, Yang X, Zeng R, et al. Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro Oncol. 2021;23:743–56.PubMedCrossRef Liu Y, Li Z, Zhang M, Zhou H, Wu X, Zhong J, Xiao F, Huang N, Yang X, Zeng R, et al. Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro Oncol. 2021;23:743–56.PubMedCrossRef
69.
70.
go back to reference Shepherd STC, Drake WM, Turajlic S. The road to systemic therapy in Von Hippel-Lindau (VHL) disease: are we there yet? Eur J Cancer. 2023;182:15–22.PubMedCrossRef Shepherd STC, Drake WM, Turajlic S. The road to systemic therapy in Von Hippel-Lindau (VHL) disease: are we there yet? Eur J Cancer. 2023;182:15–22.PubMedCrossRef
Metadata
Title
A novel peptide PDHK1-241aa encoded by circPDHK1 promotes ccRCC progression via interacting with PPP1CA to inhibit AKT dephosphorylation and activate the AKT-mTOR signaling pathway
Authors
Bo Huang
Junwu Ren
Qiang Ma
Feifei Yang
Xiaojuan Pan
Yuying Zhang
Yuying Liu
Cong Wang
Dawei Zhang
Ling Wei
Lingyu Ran
Hongwen Zhao
Ce Liang
Xiaolin Wang
Shiming Wang
Haiping Li
Hao Ning
Ai Ran
Wei Li
Yongquan Wang
Bin Xiao
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2024
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-024-01940-0

Other articles of this Issue 1/2024

Molecular Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine