Skip to main content
Top
Published in: BMC Cancer 1/2022

Open Access 01-12-2022 | Kidney Cancer | Research

A novel nine-microRNA-based model to improve prognosis prediction of renal cell carcinoma

Authors: Chen Xu, Hui Zeng, Junli Fan, Wenjie Huang, Xiaosi Yu, Shiqi Li, Fubing Wang, Xinghua Long

Published in: BMC Cancer | Issue 1/2022

Login to get access

Abstract

Background

With the improved knowledge of disease biology and the introduction of immune checkpoints, there has been significant progress in treating renal cell carcinoma (RCC) patients. Individual treatment will differ according to risk stratification. As the clinical course varies in RCC, it has developed different predictive models for assessing patient’s individual risk. However, among other prognostic scores, no transparent preference model was given. MicroRNA as a putative marker shown to have prognostic relevance in RCC, molecular analysis may provide an innovative benefit in the prophetic prediction and individual risk assessment. Therefore, this study aimed to establish a prognostic-related microRNA risk score model of RCC and further explore the relationship between the model and the immune microenvironment, immune infiltration, and immune checkpoints. This practical model has the potential to guide individualized surveillance protocols, patient counseling, and individualized treatment decision for RCC patients and facilitate to find more immunotherapy targets.

Methods

Downloaded data of RCC from the TCGA database for difference analysis and divided it into a training set and validation set. Then the prognostic genes were screened out by Cox and Lasso regression analysis. Multivariate Cox regression analysis was used to establish a predictive model that divided patients into high-risk and low-risk groups. The ENCORI online website and the results of the RCC difference analysis were used to search for hub genes of miRNA. Estimate package and TIMER database were used to evaluate the relationship between risk score and tumor immune microenvironment (TME) and immune infiltration. Based on Kaplan-Meier survival analysis, search for immune checkpoints related to the prognosis of RCC.

Results

There were nine miRNAs in the established model, with a concordance index of 0.702 and an area under the ROC curve of 0.701. Nine miRNAs were strongly correlated with the prognosis (P < 0.01), and those with high expression levels had a poor prognosis. We found a common target gene PDGFRA of hsa-miR-6718, hsa-miR-1269b and hsa-miR-374c, and five genes related to ICGs (KIR2DL3, TNFRSF4, LAG3, CD70 and TNFRSF9). The immune/stromal score, immune infiltration, and immune checkpoint genes of RCC were closely related to its prognosis and were positively associated with a risk score.

Conclusions

The established nine-miRNAs prognostic model has the potential to facilitate prognostic prediction. Moreover, this model was closely related to the immune microenvironment, immune infiltration, and immune checkpoint genes of RCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Motzer RJ, Jonasch E, Agarwal N, Bhayani S, Bro WP, Chang SS, et al. Kidney cancer, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2017;15(6):804–34. Motzer RJ, Jonasch E, Agarwal N, Bhayani S, Bro WP, Chang SS, et al. Kidney cancer, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2017;15(6):804–34.
2.
go back to reference Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74–84.PubMed Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74–84.PubMed
3.
go back to reference Inamura K. Renal cell tumors: understanding their molecular pathological epidemiology and the 2016 WHO classification. Int J Mol Sci. 2017;18(10):2195.CrossRefPubMedCentral Inamura K. Renal cell tumors: understanding their molecular pathological epidemiology and the 2016 WHO classification. Int J Mol Sci. 2017;18(10):2195.CrossRefPubMedCentral
4.
go back to reference Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021;17(4):245–61.CrossRefPubMed Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021;17(4):245–61.CrossRefPubMed
5.
go back to reference Barata PC, Rini BI. Treatment of renal cell carcinoma: current status and future directions. CA Cancer J Clin. 2017;67(6):507–24.CrossRefPubMed Barata PC, Rini BI. Treatment of renal cell carcinoma: current status and future directions. CA Cancer J Clin. 2017;67(6):507–24.CrossRefPubMed
6.
go back to reference Chowdhury N, Drake CG. Kidney cancer: an overview of current therapeutic approaches. Urol Clin North Am. 2020;47(4):419–31.CrossRefPubMed Chowdhury N, Drake CG. Kidney cancer: an overview of current therapeutic approaches. Urol Clin North Am. 2020;47(4):419–31.CrossRefPubMed
7.
go back to reference Zhang JC, Chen WD, Alvarez JB, Jia K, Shi L, Wang Q, et al. Cancer immune checkpoint blockade therapy and its associated autoimmune cardiotoxicity. Acta Pharmacol Sin. 2018;39(11):1693–8.CrossRefPubMedPubMedCentral Zhang JC, Chen WD, Alvarez JB, Jia K, Shi L, Wang Q, et al. Cancer immune checkpoint blockade therapy and its associated autoimmune cardiotoxicity. Acta Pharmacol Sin. 2018;39(11):1693–8.CrossRefPubMedPubMedCentral
9.
go back to reference Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016;18(1):84.CrossRefPubMedPubMedCentral Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016;18(1):84.CrossRefPubMedPubMedCentral
10.
go back to reference Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.CrossRefPubMed Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.CrossRefPubMed
11.
go back to reference Ferragut Cardoso AP, Udoh KT, States JC. Arsenic-induced changes in miRNA expression in cancer and other diseases. Toxicol Appl Pharmacol. 2020;409:115306.CrossRefPubMedPubMedCentral Ferragut Cardoso AP, Udoh KT, States JC. Arsenic-induced changes in miRNA expression in cancer and other diseases. Toxicol Appl Pharmacol. 2020;409:115306.CrossRefPubMedPubMedCentral
12.
go back to reference Zhao XQ, Ao Y, Chen HY, Wang H. The role of miRNA in kidney development. Yi chuan = Hereditas. 2020;42(11):1062–72.PubMed Zhao XQ, Ao Y, Chen HY, Wang H. The role of miRNA in kidney development. Yi chuan = Hereditas. 2020;42(11):1062–72.PubMed
15.
go back to reference Hu FF, Liu CJ, Liu LL, Zhang Q, Guo AY. Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response. Brief Bioinform. 2021;22(3):bbaa176. Hu FF, Liu CJ, Liu LL, Zhang Q, Guo AY. Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response. Brief Bioinform. 2021;22(3):bbaa176.
16.
go back to reference Zhang Y, Li H, Zhang W, Che Y, Bai W, Huang G. LASSObased CoxPH model identifies an 11lncRNA signature for prognosis prediction in gastric cancer. Mol Med Rep. 2018;18(6):5579–93.PubMedPubMedCentral Zhang Y, Li H, Zhang W, Che Y, Bai W, Huang G. LASSObased CoxPH model identifies an 11lncRNA signature for prognosis prediction in gastric cancer. Mol Med Rep. 2018;18(6):5579–93.PubMedPubMedCentral
17.
go back to reference Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77(21):e108–10.CrossRefPubMedPubMedCentral Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77(21):e108–10.CrossRefPubMedPubMedCentral
18.
go back to reference Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11(1):39.CrossRefPubMedPubMedCentral Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11(1):39.CrossRefPubMedPubMedCentral
20.
go back to reference Liu GW, Qin ZM, Shen QH. An ensemble method integrated with miRNA expression data for predicting miRNA targets in stomach adenocarcinoma. Cancer Biomark. 2017;20(4):617–25.CrossRefPubMed Liu GW, Qin ZM, Shen QH. An ensemble method integrated with miRNA expression data for predicting miRNA targets in stomach adenocarcinoma. Cancer Biomark. 2017;20(4):617–25.CrossRefPubMed
21.
go back to reference Sapkota H, Wren JD, Gorbsky GJ. CSAG1 maintains the integrity of the mitotic centrosome in cells with defective p53. J Cell Sci. 2020;133(10):jcs239723. Sapkota H, Wren JD, Gorbsky GJ. CSAG1 maintains the integrity of the mitotic centrosome in cells with defective p53. J Cell Sci. 2020;133(10):jcs239723.
22.
go back to reference Jingushi K, Kashiwagi Y, Ueda Y, Kitae K, Hase H, Nakata W, et al. High miR-122 expression promotes malignant phenotypes in ccRCC by targeting occludin. Int J Oncol. 2017;51(1):289–97.CrossRefPubMed Jingushi K, Kashiwagi Y, Ueda Y, Kitae K, Hase H, Nakata W, et al. High miR-122 expression promotes malignant phenotypes in ccRCC by targeting occludin. Int J Oncol. 2017;51(1):289–97.CrossRefPubMed
23.
go back to reference Yang W, Xiao W, Cai Z, Jin S, Li T. miR-1269b drives cisplatin resistance of human non-small cell lung Cancer via modulating the PTEN/PI3K/AKT signaling pathway. OncoTargets Ther. 2020;13:109–18.CrossRef Yang W, Xiao W, Cai Z, Jin S, Li T. miR-1269b drives cisplatin resistance of human non-small cell lung Cancer via modulating the PTEN/PI3K/AKT signaling pathway. OncoTargets Ther. 2020;13:109–18.CrossRef
24.
go back to reference Kong XX, Lv YR, Shao LP, Nong XY, Zhang GL, Zhang Y, et al. HBx-induced MiR-1269b in NF-κB dependent manner upregulates cell division cycle 40 homolog (CDC40) to promote proliferation and migration in hepatoma cells. J Transl Med. 2016;14(1):189.CrossRefPubMedPubMedCentral Kong XX, Lv YR, Shao LP, Nong XY, Zhang GL, Zhang Y, et al. HBx-induced MiR-1269b in NF-κB dependent manner upregulates cell division cycle 40 homolog (CDC40) to promote proliferation and migration in hepatoma cells. J Transl Med. 2016;14(1):189.CrossRefPubMedPubMedCentral
25.
go back to reference Wang X, Gao J, Zhou B, Xie J, Zhou G, Chen Y. Identification of prognostic markers for hepatocellular carcinoma based on miRNA expression profiles. Life Sci. 2019;232:116596.CrossRefPubMed Wang X, Gao J, Zhou B, Xie J, Zhou G, Chen Y. Identification of prognostic markers for hepatocellular carcinoma based on miRNA expression profiles. Life Sci. 2019;232:116596.CrossRefPubMed
26.
go back to reference Meng L, Xing Z, Guo Z, Qiu Y, Liu Z. Hypoxia-induced microRNA-155 overexpression in extracellular vesicles promotes renal cell carcinoma progression by targeting FOXO3. Aging. 2021;13(7):9613–26.CrossRefPubMedPubMedCentral Meng L, Xing Z, Guo Z, Qiu Y, Liu Z. Hypoxia-induced microRNA-155 overexpression in extracellular vesicles promotes renal cell carcinoma progression by targeting FOXO3. Aging. 2021;13(7):9613–26.CrossRefPubMedPubMedCentral
27.
go back to reference García-Donas J, Beuselinck B, Inglada-Pérez L, Graña O, Schöffski P, Wozniak A, et al. Deep sequencing reveals microRNAs predictive of antiangiogenic drug response. JCI insight. 2016;1(10):e86051.CrossRefPubMedPubMedCentral García-Donas J, Beuselinck B, Inglada-Pérez L, Graña O, Schöffski P, Wozniak A, et al. Deep sequencing reveals microRNAs predictive of antiangiogenic drug response. JCI insight. 2016;1(10):e86051.CrossRefPubMedPubMedCentral
28.
go back to reference Zhang J, Ye Y, Chang DW, Lin SH, Huang M, Tannir NM, et al. Global and targeted miRNA expression profiling in clear cell renal cell carcinoma tissues potentially links miR-155-5p and miR-210-3p to both tumorigenesis and recurrence. Am J Pathol. 2018;188(11):2487–96.CrossRefPubMedPubMedCentral Zhang J, Ye Y, Chang DW, Lin SH, Huang M, Tannir NM, et al. Global and targeted miRNA expression profiling in clear cell renal cell carcinoma tissues potentially links miR-155-5p and miR-210-3p to both tumorigenesis and recurrence. Am J Pathol. 2018;188(11):2487–96.CrossRefPubMedPubMedCentral
29.
go back to reference Pan Y, Hu J, Ma J, Qi X, Zhou H, Miao X, et al. MiR-193a-3p and miR-224 mediate renal cell carcinoma progression by targeting alpha-2,3-sialyltransferase IV and the phosphatidylinositol 3 kinase/Akt pathway. Mol Carcinog. 2018;57(8):1067–77.CrossRefPubMed Pan Y, Hu J, Ma J, Qi X, Zhou H, Miao X, et al. MiR-193a-3p and miR-224 mediate renal cell carcinoma progression by targeting alpha-2,3-sialyltransferase IV and the phosphatidylinositol 3 kinase/Akt pathway. Mol Carcinog. 2018;57(8):1067–77.CrossRefPubMed
30.
go back to reference Huang Y, Huang H, Li M, Zhang X, Liu Y, Wang Y. MicroRNA-374c-5p regulates the invasion and migration of cervical cancer by acting on the Foxc1/snail pathway. Biomed Pharmacother = Biomedecine & pharmacotherapie. 2017;94:1038–47.CrossRef Huang Y, Huang H, Li M, Zhang X, Liu Y, Wang Y. MicroRNA-374c-5p regulates the invasion and migration of cervical cancer by acting on the Foxc1/snail pathway. Biomed Pharmacother = Biomedecine & pharmacotherapie. 2017;94:1038–47.CrossRef
31.
go back to reference Lauber C, Correia N, Trumpp A, Rieger MA, Dolnik A, Bullinger L, et al. Survival differences and associated molecular signatures of DNMT3A-mutant acute myeloid leukemia patients. Sci Rep. 2020;10(1):12761.CrossRefPubMedPubMedCentral Lauber C, Correia N, Trumpp A, Rieger MA, Dolnik A, Bullinger L, et al. Survival differences and associated molecular signatures of DNMT3A-mutant acute myeloid leukemia patients. Sci Rep. 2020;10(1):12761.CrossRefPubMedPubMedCentral
32.
go back to reference Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol. 2019;234(8):12369–84.CrossRefPubMed Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol. 2019;234(8):12369–84.CrossRefPubMed
33.
go back to reference CCL C, Deshmukh S, Jessa S, Hadjadj D, Lisi V, Andrade AF, et al. Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell. 2020;183(6):1617–1633.e1622.CrossRef CCL C, Deshmukh S, Jessa S, Hadjadj D, Lisi V, Andrade AF, et al. Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell. 2020;183(6):1617–1633.e1622.CrossRef
34.
go back to reference Evans EK, Gardino AK, Kim JL, Hodous BL, Shutes A, Davis A, et al. A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci Transl Med. 2017;9(414):eaao1690. Evans EK, Gardino AK, Kim JL, Hodous BL, Shutes A, Davis A, et al. A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci Transl Med. 2017;9(414):eaao1690.
36.
go back to reference Rini BI, Battle D, Figlin RA, George DJ, Hammers H, Hutson T, et al. The society for immunotherapy of cancer consensus statement on immunotherapy for the treatment of advanced renal cell carcinoma (RCC). J Immunother Cancer. 2019;7(1):354.CrossRefPubMedPubMedCentral Rini BI, Battle D, Figlin RA, George DJ, Hammers H, Hutson T, et al. The society for immunotherapy of cancer consensus statement on immunotherapy for the treatment of advanced renal cell carcinoma (RCC). J Immunother Cancer. 2019;7(1):354.CrossRefPubMedPubMedCentral
37.
go back to reference SenGupta S, Subramanian BC, Parent CA. Getting TANned: how the tumor microenvironment drives neutrophil recruitment. J Leukoc Biol. 2019;105(3):449–62.CrossRefPubMed SenGupta S, Subramanian BC, Parent CA. Getting TANned: how the tumor microenvironment drives neutrophil recruitment. J Leukoc Biol. 2019;105(3):449–62.CrossRefPubMed
38.
go back to reference Tokunaga R, Naseem M, Lo JH, Battaglin F, Soni S, Puccini A, et al. B cell and B cell-related pathways for novel cancer treatments. Cancer Treat Rev. 2019;73:10–9.CrossRefPubMed Tokunaga R, Naseem M, Lo JH, Battaglin F, Soni S, Puccini A, et al. B cell and B cell-related pathways for novel cancer treatments. Cancer Treat Rev. 2019;73:10–9.CrossRefPubMed
39.
go back to reference Hayashi H, Nakagawa K. Combination therapy with PD-1 or PD-L1 inhibitors for cancer. Int J Clin Oncol. 2020;25(5):818–30.CrossRefPubMed Hayashi H, Nakagawa K. Combination therapy with PD-1 or PD-L1 inhibitors for cancer. Int J Clin Oncol. 2020;25(5):818–30.CrossRefPubMed
40.
go back to reference Ruffo E, Wu RC, Bruno TC, Workman CJ, Vignali DAA. Lymphocyte-activation gene 3 (LAG3): the next immune checkpoint receptor. Semin Immunol. 2019;42:101305.CrossRefPubMedPubMedCentral Ruffo E, Wu RC, Bruno TC, Workman CJ, Vignali DAA. Lymphocyte-activation gene 3 (LAG3): the next immune checkpoint receptor. Semin Immunol. 2019;42:101305.CrossRefPubMedPubMedCentral
41.
go back to reference Solinas C, Migliori E, De Silva P, Willard-Gallo K. LAG3: the biological processes that motivate targeting this immune checkpoint molecule in human cancer. Cancers. 2019;11(8):1213. Solinas C, Migliori E, De Silva P, Willard-Gallo K. LAG3: the biological processes that motivate targeting this immune checkpoint molecule in human cancer. Cancers. 2019;11(8):1213.
43.
go back to reference Li Y, Wang Z, Jiang W, Zeng H, Liu Z, Lin Z, et al. Tumor-infiltrating TNFRSF9(+) CD8(+) T cells define different subsets of clear cell renal cell carcinoma with prognosis and immunotherapeutic response. Oncoimmunology. 2020;9(1):1838141.CrossRefPubMedPubMedCentral Li Y, Wang Z, Jiang W, Zeng H, Liu Z, Lin Z, et al. Tumor-infiltrating TNFRSF9(+) CD8(+) T cells define different subsets of clear cell renal cell carcinoma with prognosis and immunotherapeutic response. Oncoimmunology. 2020;9(1):1838141.CrossRefPubMedPubMedCentral
Metadata
Title
A novel nine-microRNA-based model to improve prognosis prediction of renal cell carcinoma
Authors
Chen Xu
Hui Zeng
Junli Fan
Wenjie Huang
Xiaosi Yu
Shiqi Li
Fubing Wang
Xinghua Long
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2022
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-022-09322-9

Other articles of this Issue 1/2022

BMC Cancer 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine