Skip to main content
Top
Published in: BMC Ophthalmology 1/2022

Open Access 01-12-2022 | Keratectomy | Research

Role of corneal epithelial thickness during myopic regression in femtosecond laser-assisted in situ keratomileusis and transepithelial photorefractive keratectomy

Authors: Hua Li, Qichao Han, Jiafan Zhang, Ting Shao, Huifeng Wang, Keli Long

Published in: BMC Ophthalmology | Issue 1/2022

Login to get access

Abstract

Background

The study aimed to investigate the relationship between changes in corneal epithelial thickness and the outcome of myopic regression after femtosecond laser-assisted in situ keratomileusis (FS-LASIK) and transepithelial photorefractive keratectomy (TPRK).

Methods

This study included 45 eyes of 25 patients undergoing FS-LASIK and 44 eyes of 24 patients undergoing TPRK. Myopic regression occurred in these patients postoperatively from 8 to 21 months. The corneal epithelial thickness was measured using a spectral-domain optical coherence tomography at the onset of regression, 3 months after treatment, and 3 months after drug withdrawal.

Results

Compared with that of preoperation, corneal epithelial thickness increased when regression occurred in both groups (all P < 0.05). The thickness of central corneal epithelium in FS-LASIK and TPRK groups reached 65.02 ± 4.12 µm and 61.63 ± 2.91 µm, respectively. The corneal epithelial thickness decreased when myopic regression subsided after 3 months of steroid treatment compared to the onset (P < 0.05). With a decrease in corneal epithelial thickness, the curvature of the anterior corneal surface, central corneal thickness, and refractive power all decreased (all P < 0.05). The corneal epithelial thickness and refractive error remained relatively stable after 3 months of treatment withdrawal (P > 0.05).

Conclusion

The corneal epithelial thickness determined the outcome of myopic regression similarly in FS-LASIK and TPRK. When the corneal epithelium thickened, regression occurred. After steroid treatment, epithelial thickness decreased whereas regression subsided.
Literature
1.
go back to reference Chen YI, Chien KL, Wang IJ, et al. An interval-censored model for predicting myopic regression after laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 2007;48(8):3516–23.CrossRef Chen YI, Chien KL, Wang IJ, et al. An interval-censored model for predicting myopic regression after laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 2007;48(8):3516–23.CrossRef
2.
go back to reference Albietz JM, Lenton LM, McLennan SG. Chronic dry eye and regression after laser in situ keratomileusis for myopia. J Cataract Refract Surg. 2004;30(3):675–84.CrossRef Albietz JM, Lenton LM, McLennan SG. Chronic dry eye and regression after laser in situ keratomileusis for myopia. J Cataract Refract Surg. 2004;30(3):675–84.CrossRef
3.
go back to reference Hu DJ, Feder RS, Basti S, et al. Predictive formula for calculating the probability of LASIK enhancement. J Cataract Refract Surg. 2004;30(2):363–8.CrossRef Hu DJ, Feder RS, Basti S, et al. Predictive formula for calculating the probability of LASIK enhancement. J Cataract Refract Surg. 2004;30(2):363–8.CrossRef
4.
go back to reference Dirani M, Couper T, Yau J, et al. Long-term refractive outcomes and stability after excimer laser surgery for myopia. J Cataract Refract Surg. 2010;36(10):1709–17.CrossRef Dirani M, Couper T, Yau J, et al. Long-term refractive outcomes and stability after excimer laser surgery for myopia. J Cataract Refract Surg. 2010;36(10):1709–17.CrossRef
5.
go back to reference Magallanes R, Shah S, Zadok D, et al. Stability after laser in situ keratomileusis in moderately and extremely myopic eyes. J Cataract Refract Surg. 2001;27(7):1007–12.CrossRef Magallanes R, Shah S, Zadok D, et al. Stability after laser in situ keratomileusis in moderately and extremely myopic eyes. J Cataract Refract Surg. 2001;27(7):1007–12.CrossRef
6.
go back to reference Liu M, Gao H, Shi W. Factors affecting myopic regression after laser in situ keratomileusis and laser-assisted subepithelial keratectomy for high myopia. Semin Ophthalmol. 2019;34(5):359–64.CrossRef Liu M, Gao H, Shi W. Factors affecting myopic regression after laser in situ keratomileusis and laser-assisted subepithelial keratectomy for high myopia. Semin Ophthalmol. 2019;34(5):359–64.CrossRef
7.
go back to reference O’Brart DP, Corbett MC, Verma S, et al. Effects of ablation diameter, depth, and edge contour on the outcome of photorefractive keratectomy. J Refract Surg. 1996;12(1):50–60.CrossRef O’Brart DP, Corbett MC, Verma S, et al. Effects of ablation diameter, depth, and edge contour on the outcome of photorefractive keratectomy. J Refract Surg. 1996;12(1):50–60.CrossRef
8.
go back to reference O’Brart DP, Gartry DS, Lohmann CP, Muir MG, Marshall J. Excimer laser photorefractive keratectomy for myopia: comparison of 4.00- and 5.00-millimeter ablation zones. J Refract Surg. 1994;10(2):87–94.CrossRef O’Brart DP, Gartry DS, Lohmann CP, Muir MG, Marshall J. Excimer laser photorefractive keratectomy for myopia: comparison of 4.00- and 5.00-millimeter ablation zones. J Refract Surg. 1994;10(2):87–94.CrossRef
9.
go back to reference Moshirfar M. Desautels JD, Walker BD, Murri MS, Birdsong OC, Hoopes PCS. Mechanisms of optical regression following corneal laser refractive surgery: epithelial and stromal responses. Med Hypothesis Discov Innov Ophthalmol. 2018;7(1):1–9. Moshirfar M. Desautels JD, Walker BD, Murri MS, Birdsong OC, Hoopes PCS. Mechanisms of optical regression following corneal laser refractive surgery: epithelial and stromal responses. Med Hypothesis Discov Innov Ophthalmol. 2018;7(1):1–9.
10.
go back to reference Ryu IH, Kim BJ, Lee JH, Kim SW. Comparison of corneal epithelial remodeling after femtosecond laser-assisted LASIK and small incision lenticule extraction (SMILE). J Refract Surg. 2017;33(4):250–6.CrossRef Ryu IH, Kim BJ, Lee JH, Kim SW. Comparison of corneal epithelial remodeling after femtosecond laser-assisted LASIK and small incision lenticule extraction (SMILE). J Refract Surg. 2017;33(4):250–6.CrossRef
11.
go back to reference Gauthier CA, Holden BA, Epstein D, Tengroth B, Fagerholm P, Hamberg-Nyström H. Role of epithelial hyperplasia in regression following photorefractive keratectomy. Br J Ophthalmol. 1996;80(6):545–8.CrossRef Gauthier CA, Holden BA, Epstein D, Tengroth B, Fagerholm P, Hamberg-Nyström H. Role of epithelial hyperplasia in regression following photorefractive keratectomy. Br J Ophthalmol. 1996;80(6):545–8.CrossRef
12.
go back to reference Ivarsen A, Fledelius W, Hjortdal J. Three-year changes in epithelial and stromal thickness after PRK or LASIK for high myopia. Invest Ophthalmol Vis Sci. 2009;50(5):2061–6.CrossRef Ivarsen A, Fledelius W, Hjortdal J. Three-year changes in epithelial and stromal thickness after PRK or LASIK for high myopia. Invest Ophthalmol Vis Sci. 2009;50(5):2061–6.CrossRef
13.
go back to reference Ogasawara K, Onodera T. Residual stromal bed thickness correlates with regression of myopia after LASIK. Clin Ophthalmol. 2016;10:1977–81.CrossRef Ogasawara K, Onodera T. Residual stromal bed thickness correlates with regression of myopia after LASIK. Clin Ophthalmol. 2016;10:1977–81.CrossRef
14.
go back to reference Salomão MQ, Hofling-Lima AL, Lopes BT, et al. Role of the corneal epithelium measurements in keratorefractive surgery. Curr Opin Ophthalmol. 2017;28(4):326–36.CrossRef Salomão MQ, Hofling-Lima AL, Lopes BT, et al. Role of the corneal epithelium measurements in keratorefractive surgery. Curr Opin Ophthalmol. 2017;28(4):326–36.CrossRef
15.
go back to reference Gauthier CA, Holden BA, Epstein D, Tengroth B, Fagerholm P, Hamberg-Nyström H. Factors affecting epithelial hyperplasia after photorefractive keratectomy. J Cataract Refract Surg. 1997;23(7):1042–50.CrossRef Gauthier CA, Holden BA, Epstein D, Tengroth B, Fagerholm P, Hamberg-Nyström H. Factors affecting epithelial hyperplasia after photorefractive keratectomy. J Cataract Refract Surg. 1997;23(7):1042–50.CrossRef
16.
go back to reference Fitzsimmons TD, Fagerholm P, Tengroth B. Steroid treatment of myopic regression: acute refractive and topographic changes in excimer photorefractive keratectomy patients. Cornea. 1993;12(4):358–61.CrossRef Fitzsimmons TD, Fagerholm P, Tengroth B. Steroid treatment of myopic regression: acute refractive and topographic changes in excimer photorefractive keratectomy patients. Cornea. 1993;12(4):358–61.CrossRef
17.
go back to reference Reinstein DZ, Archer TJ, Gobbe M. Rate of change of curvature of the corneal stromal surface drives epithelial compensatory changes and remodeling. J Refract Surg. 2014;30(12):799–802.CrossRef Reinstein DZ, Archer TJ, Gobbe M. Rate of change of curvature of the corneal stromal surface drives epithelial compensatory changes and remodeling. J Refract Surg. 2014;30(12):799–802.CrossRef
18.
go back to reference Reinstein DZ, Srivannaboon S, Gobbe M, et al. Epithelial thickness profile changes induced by myopic LASIK as measured by Artemis very high-frequency digital ultrasound. J Refract Surg. 2009;25(5):444–50.CrossRef Reinstein DZ, Srivannaboon S, Gobbe M, et al. Epithelial thickness profile changes induced by myopic LASIK as measured by Artemis very high-frequency digital ultrasound. J Refract Surg. 2009;25(5):444–50.CrossRef
19.
go back to reference Reinstein DZ, Archer TJ, Gobbe M. Change in epithelial thickness profile 24 hours and longitudinally for 1 year after myopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2012;28(3):195–201.CrossRef Reinstein DZ, Archer TJ, Gobbe M. Change in epithelial thickness profile 24 hours and longitudinally for 1 year after myopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2012;28(3):195–201.CrossRef
20.
go back to reference Kanellopoulos AJ, Asimellis G. Longitudinal postoperative lasik epithelial thickness profile changes in correlation with degree of myopia correction. J Refract Surg. 2014;30(3):166–71. Kanellopoulos AJ, Asimellis G. Longitudinal postoperative lasik epithelial thickness profile changes in correlation with degree of myopia correction. J Refract Surg. 2014;30(3):166–71.
21.
go back to reference Wilson SE, Mohan RR, Hong JW, Lee JS, Choi R, Mohan RR. The wound healing response after laser in situ keratomileusis and photorefractive keratectomy: elusive control of biological variability and effect on custom laser vision correction. Arch Ophthalmol. 2001;119(6):889–96.CrossRef Wilson SE, Mohan RR, Hong JW, Lee JS, Choi R, Mohan RR. The wound healing response after laser in situ keratomileusis and photorefractive keratectomy: elusive control of biological variability and effect on custom laser vision correction. Arch Ophthalmol. 2001;119(6):889–96.CrossRef
22.
go back to reference Hwang ES, Schallhorn JM, Randleman JB. Utility of regional epithelial thickness measurements in corneal evaluations. Surv Ophthalmol. 2020;65(2):187–204.CrossRef Hwang ES, Schallhorn JM, Randleman JB. Utility of regional epithelial thickness measurements in corneal evaluations. Surv Ophthalmol. 2020;65(2):187–204.CrossRef
23.
go back to reference Zhang J, Feng Q, Ding W, Peng Y, Long K. Comparison of clinical results between trans-PRK and femtosecond LASIK for correction of high myopia. BMC Ophthalmol. 2020;20(1):243.CrossRef Zhang J, Feng Q, Ding W, Peng Y, Long K. Comparison of clinical results between trans-PRK and femtosecond LASIK for correction of high myopia. BMC Ophthalmol. 2020;20(1):243.CrossRef
24.
go back to reference Vinciguerra P, Roberts CJ, Albé E, et al. Corneal curvature gradient map: a new corneal topography map to predict the corneal healing process. J Refract Surg. 2014;30(3):202–7.CrossRef Vinciguerra P, Roberts CJ, Albé E, et al. Corneal curvature gradient map: a new corneal topography map to predict the corneal healing process. J Refract Surg. 2014;30(3):202–7.CrossRef
25.
go back to reference Kanellopoulos AJ, Aslanides IM, Asimellis G. Correlation between epithelial thickness in normal corneas, untreated ectatic corneas, and ectatic corneas previously treated with CXL: is overall epithelial thickness a very early ectasia prognostic factor? Clin Ophthalmol. 2012;6:789–800.CrossRef Kanellopoulos AJ, Aslanides IM, Asimellis G. Correlation between epithelial thickness in normal corneas, untreated ectatic corneas, and ectatic corneas previously treated with CXL: is overall epithelial thickness a very early ectasia prognostic factor? Clin Ophthalmol. 2012;6:789–800.CrossRef
26.
go back to reference Kanellopoulos AJ, Asimellis G. Epithelial remodeling after femtosecond laser-assisted high myopic LASIK: comparison of stand-alone with LASIK combined with prophylactic highfluence cross-linking. Cornea. 2014;33(5):463–9.CrossRef Kanellopoulos AJ, Asimellis G. Epithelial remodeling after femtosecond laser-assisted high myopic LASIK: comparison of stand-alone with LASIK combined with prophylactic highfluence cross-linking. Cornea. 2014;33(5):463–9.CrossRef
27.
go back to reference Kang DSY, Kim SW. Effect of corneal cross-linking on epithelial hyperplasia and myopia regression after transepithelial photorefractive keratectomy. J Refract Surg. 2019;35(6):354–61.CrossRef Kang DSY, Kim SW. Effect of corneal cross-linking on epithelial hyperplasia and myopia regression after transepithelial photorefractive keratectomy. J Refract Surg. 2019;35(6):354–61.CrossRef
28.
go back to reference Ryu IH, Kim WK, Nam MS, Kim JK, Kim SW. Reduction of corneal epithelial thickness during medical treatment for myopic regression following FS-LASIK. BMC Ophthalmol. 2020;20(1):296.CrossRef Ryu IH, Kim WK, Nam MS, Kim JK, Kim SW. Reduction of corneal epithelial thickness during medical treatment for myopic regression following FS-LASIK. BMC Ophthalmol. 2020;20(1):296.CrossRef
29.
go back to reference Chan TC, Liu D, Yu M, Jhanji V. Longitudinal evaluation of posterior corneal elevation after laser refractive surgery using swept-source optical coherence tomography. Ophthalmol. 2015;122(4):687–92.CrossRef Chan TC, Liu D, Yu M, Jhanji V. Longitudinal evaluation of posterior corneal elevation after laser refractive surgery using swept-source optical coherence tomography. Ophthalmol. 2015;122(4):687–92.CrossRef
30.
go back to reference Nemet A, Mimouni M, Vainer I, Sela T, Kaiserman I. Factors associated with changes in posterior corneal surface following photorefractive. Graefes Arch Clin Exp Ophthalmol. 2021;259(11):3477–83.CrossRef Nemet A, Mimouni M, Vainer I, Sela T, Kaiserman I. Factors associated with changes in posterior corneal surface following photorefractive. Graefes Arch Clin Exp Ophthalmol. 2021;259(11):3477–83.CrossRef
31.
go back to reference Qi H, Hao Y, Xia Y, Chen Y. Regression-related factors before and after laser in situ keratomileusis. Ophthalmologica. 2006;220(4):272–6.CrossRef Qi H, Hao Y, Xia Y, Chen Y. Regression-related factors before and after laser in situ keratomileusis. Ophthalmologica. 2006;220(4):272–6.CrossRef
32.
go back to reference Shojaei A. Eslani M, Vali Y. Mansouri M, Dadman N. Yaseri M. Effect of timolol on refractive outcomes in eyes with myopic regression after laser in situ keratomileusis: a prospective randomized clinical trial. Am J Ophthalmol. 2012;154(5):790–8.CrossRef Shojaei A. Eslani M, Vali Y. Mansouri M, Dadman N. Yaseri M. Effect of timolol on refractive outcomes in eyes with myopic regression after laser in situ keratomileusis: a prospective randomized clinical trial. Am J Ophthalmol. 2012;154(5):790–8.CrossRef
33.
go back to reference Kamiya K. Aizawa D, Igarashi A. Komatsu M, Shimizu K. Effects of antiglaucoma drugs on refractive outcomes in eyes with myopic regression after laser in situ keratomileusis. Am J Ophthalmol. 2008;145(2):233–8.CrossRef Kamiya K. Aizawa D, Igarashi A. Komatsu M, Shimizu K. Effects of antiglaucoma drugs on refractive outcomes in eyes with myopic regression after laser in situ keratomileusis. Am J Ophthalmol. 2008;145(2):233–8.CrossRef
34.
go back to reference Nam M, Kim SW. Changes in corneal epithelial thickness induced by topical antiglaucoma medications. J Clin Med. 2021;10(16):3464.CrossRef Nam M, Kim SW. Changes in corneal epithelial thickness induced by topical antiglaucoma medications. J Clin Med. 2021;10(16):3464.CrossRef
35.
go back to reference Halkiadakis I, Vernikou A, Tzimis V, Markopoulos I, Popeskou K, Konstadinidou V. Assessment of corneal epithelium thickness in glaucomatous patients undergoing medical treatment. J Glaucoma. 2021;30(1):44–9.CrossRef Halkiadakis I, Vernikou A, Tzimis V, Markopoulos I, Popeskou K, Konstadinidou V. Assessment of corneal epithelium thickness in glaucomatous patients undergoing medical treatment. J Glaucoma. 2021;30(1):44–9.CrossRef
Metadata
Title
Role of corneal epithelial thickness during myopic regression in femtosecond laser-assisted in situ keratomileusis and transepithelial photorefractive keratectomy
Authors
Hua Li
Qichao Han
Jiafan Zhang
Ting Shao
Huifeng Wang
Keli Long
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2022
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-022-02727-x

Other articles of this Issue 1/2022

BMC Ophthalmology 1/2022 Go to the issue