Skip to main content
Top
Published in: BMC Pediatrics 1/2020

Open Access 01-12-2020 | Kawasaki Disease | Research article

Comprehensive pathogen detection in sera of Kawasaki disease patients by high-throughput sequencing: a retrospective exploratory study

Authors: Yuka Torii, Kazuhiro Horiba, Satoshi Hayano, Taichi Kato, Takako Suzuki, Jun-ichi Kawada, Yoshiyuki Takahashi, Seiji Kojima, Yusuke Okuno, Tomoo Ogi, Yoshinori Ito

Published in: BMC Pediatrics | Issue 1/2020

Login to get access

Abstract

Background

Kawasaki disease (KD) is an idiopathic systemic vasculitis that predominantly damages coronary arteries in children. Various pathogens have been investigated as triggers for KD, but no definitive causative pathogen has been determined. As KD is diagnosed by symptoms, several days are needed for diagnosis. Therefore, at the time of diagnosis of KD, the pathogen of the trigger may already be diminished. The aim of this study was to explore comprehensive pathogens in the sera at the acute stage of KD using high-throughput sequencing (HTS).

Methods

Sera of 12 patients at an extremely early stage of KD and 12 controls were investigated. DNA and RNA sequences were read separately using HTS. Sequence data were imported into the home-brew meta-genomic analysis pipeline, PATHDET, to identify the pathogen sequences.

Results

No RNA virus reads were detected in any KD case except for that of equine infectious anemia, which is known as a contaminant of commercial reverse transcriptase. Concerning DNA viruses, human herpesvirus 6B (HHV-6B, two cases) and Anelloviridae (eight cases) were detected among KD cases as well as controls. Multiple bacterial reads were obtained from KD and controls. Bacteria of the genera Acinetobacter, Pseudomonas, Delfita, Roseomonas, and Rhodocyclaceae appeared to be more common in KD sera than in the controls.

Conclusion

No single pathogen was identified in serum samples of patients at the acute phase of KD. With multiple bacteria detected in the serum samples, it is difficult to exclude the possibility of contamination; however, it is possible that these bacteria might stimulate the immune system and induce KD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nagata S. Causes of Kawasaki disease-from past to present. Front Pediatr. 2019;7:18.CrossRef Nagata S. Causes of Kawasaki disease-from past to present. Front Pediatr. 2019;7:18.CrossRef
2.
go back to reference Rowley AH. Is Kawasaki disease an infectious disorder? Int J Rheum Dis. 2018;21(1):20–5.CrossRef Rowley AH. Is Kawasaki disease an infectious disorder? Int J Rheum Dis. 2018;21(1):20–5.CrossRef
3.
go back to reference Lee YC, Kuo HC, Chang JS, Chang LY, Huang LM, Chen MR, et al. Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis. Nat Genet. 2012;44(5):522–5.CrossRef Lee YC, Kuo HC, Chang JS, Chang LY, Huang LM, Chen MR, et al. Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis. Nat Genet. 2012;44(5):522–5.CrossRef
4.
go back to reference Onouchi Y, Ozaki K, Burns JC, Shimizu C, Terai M, Hamada H, et al. A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet. 2012;44(5):517–21.CrossRef Onouchi Y, Ozaki K, Burns JC, Shimizu C, Terai M, Hamada H, et al. A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet. 2012;44(5):517–21.CrossRef
5.
go back to reference Burns JC, Cayan DR, Tong G, Bainto EV, Turner CL, Shike H, et al. Seasonality and temporal clustering of Kawasaki syndrome. Epidemiology. 2005;16(2):220–5.CrossRef Burns JC, Cayan DR, Tong G, Bainto EV, Turner CL, Shike H, et al. Seasonality and temporal clustering of Kawasaki syndrome. Epidemiology. 2005;16(2):220–5.CrossRef
6.
go back to reference Yanagawa H, Nakamura Y, Yashiro M, Fujita Y, Nagai M, Kawasaki T, et al. A nationwide incidence survey of Kawasaki disease in 1985-1986 in Japan. J Infect Dis. 1988;158(6):1296–301.CrossRef Yanagawa H, Nakamura Y, Yashiro M, Fujita Y, Nagai M, Kawasaki T, et al. A nationwide incidence survey of Kawasaki disease in 1985-1986 in Japan. J Infect Dis. 1988;158(6):1296–301.CrossRef
7.
go back to reference Lee KY, Rhim JW, Kang JH. Kawasaki disease: laboratory findings and an immunopathogenesis on the premise of a "protein homeostasis system". Yonsei Med J. 2012;53(2):262–75.CrossRef Lee KY, Rhim JW, Kang JH. Kawasaki disease: laboratory findings and an immunopathogenesis on the premise of a "protein homeostasis system". Yonsei Med J. 2012;53(2):262–75.CrossRef
8.
go back to reference Horiba K, Kawada JI, Okuno Y, Tetsuka N, Suzuki T, Ando S, et al. Comprehensive detection of pathogens in immunocompromised children with bloodstream infections by next-generation sequencing. Sci Rep. 2018;8(1):3784.CrossRef Horiba K, Kawada JI, Okuno Y, Tetsuka N, Suzuki T, Ando S, et al. Comprehensive detection of pathogens in immunocompromised children with bloodstream infections by next-generation sequencing. Sci Rep. 2018;8(1):3784.CrossRef
9.
go back to reference Suzuki T, Kawada JI, Okuno Y, Hayano S, Horiba K, Torii Y, et al. Comprehensive detection of viruses in pediatric patients with acute liver failure using next-generation sequencing. J Clin Virol. 2017;96:67–72.CrossRef Suzuki T, Kawada JI, Okuno Y, Hayano S, Horiba K, Torii Y, et al. Comprehensive detection of viruses in pediatric patients with acute liver failure using next-generation sequencing. J Clin Virol. 2017;96:67–72.CrossRef
10.
go back to reference Takeuchi S, Kawada JI, Okuno Y, Horiba K, Suzuki T, Torii Y, et al. Identification of potential pathogenic viruses in patients with acute myocarditis using next-generation sequencing. J Med Virol. 2018;90(12):1814–21.CrossRef Takeuchi S, Kawada JI, Okuno Y, Horiba K, Suzuki T, Torii Y, et al. Identification of potential pathogenic viruses in patients with acute myocarditis using next-generation sequencing. J Med Virol. 2018;90(12):1814–21.CrossRef
11.
go back to reference Ayusawa M, Sonobe T, Uemura S, Ogawa S, Nakamura Y, Kiyosawa N, et al. Revision of diagnostic guidelines for Kawasaki disease (the 5th revised edition). Pediatr Int. 2005;47(2):232–4.CrossRef Ayusawa M, Sonobe T, Uemura S, Ogawa S, Nakamura Y, Kiyosawa N, et al. Revision of diagnostic guidelines for Kawasaki disease (the 5th revised edition). Pediatr Int. 2005;47(2):232–4.CrossRef
13.
14.
go back to reference Wally N, Schneider M, Thannesberger J, Kastner MT, Bakonyi T, Indik S, et al. Plasmid DNA contaminant in molecular reagents. Sci Rep. 2019;9(1):1652.CrossRef Wally N, Schneider M, Thannesberger J, Kastner MT, Bakonyi T, Indik S, et al. Plasmid DNA contaminant in molecular reagents. Sci Rep. 2019;9(1):1652.CrossRef
15.
go back to reference Zerr DM, Meier AS, Selke SS, Frenkel LM, Huang ML, Wald A, et al. A population-based study of primary human herpesvirus 6 infection. N Engl J Med. 2005;352(8):768–76.CrossRef Zerr DM, Meier AS, Selke SS, Frenkel LM, Huang ML, Wald A, et al. A population-based study of primary human herpesvirus 6 infection. N Engl J Med. 2005;352(8):768–76.CrossRef
16.
go back to reference Caserta MT, McDermott MP, Dewhurst S, Schnabel K, Carnahan JA, Gilbert L, et al. Human herpesvirus 6 (HHV6) DNA persistence and reactivation in healthy children. J Pediatr. 2004;145(4):478–84.CrossRef Caserta MT, McDermott MP, Dewhurst S, Schnabel K, Carnahan JA, Gilbert L, et al. Human herpesvirus 6 (HHV6) DNA persistence and reactivation in healthy children. J Pediatr. 2004;145(4):478–84.CrossRef
17.
go back to reference Kawano Y, Kawada JI, Nagai N, Ito Y. Reactivation of human herpesviruses 6 and 7 in Kawasaki disease. Mod Rheumatol. 2019;29(4):651–5.CrossRef Kawano Y, Kawada JI, Nagai N, Ito Y. Reactivation of human herpesviruses 6 and 7 in Kawasaki disease. Mod Rheumatol. 2019;29(4):651–5.CrossRef
18.
go back to reference Okano M, Luka J, Thiele GM, Sakiyama Y, Matsumoto S, Purtilo DT. Human herpesvirus 6 infection and Kawasaki disease. J Clin Microbiol. 1989;27(10):2379–80.CrossRef Okano M, Luka J, Thiele GM, Sakiyama Y, Matsumoto S, Purtilo DT. Human herpesvirus 6 infection and Kawasaki disease. J Clin Microbiol. 1989;27(10):2379–80.CrossRef
19.
go back to reference De Vlaminck I, Khush KK, Strehl C, Kohli B, Luikart H, Neff NF, et al. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell. 2013;155(5):1178–87.CrossRef De Vlaminck I, Khush KK, Strehl C, Kohli B, Luikart H, Neff NF, et al. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell. 2013;155(5):1178–87.CrossRef
20.
go back to reference Focosi D, Antonelli G, Pistello M, Maggi F. Torquetenovirus: the human virome from bench to bedside. Clin Microbiol Infect. 2016;22(7):589–93.CrossRef Focosi D, Antonelli G, Pistello M, Maggi F. Torquetenovirus: the human virome from bench to bedside. Clin Microbiol Infect. 2016;22(7):589–93.CrossRef
21.
go back to reference Thissen JB, Isshiki M, Jaing C, Nagao Y, Lebron Aldea D, Allen JE, et al. A novel variant of torque Teno virus 7 identified in patients with Kawasaki disease. PLoS One. 2018;13(12):e0209683.CrossRef Thissen JB, Isshiki M, Jaing C, Nagao Y, Lebron Aldea D, Allen JE, et al. A novel variant of torque Teno virus 7 identified in patients with Kawasaki disease. PLoS One. 2018;13(12):e0209683.CrossRef
22.
go back to reference Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.CrossRef Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.CrossRef
23.
go back to reference Bilgin H, Sarmis A, Tigen E, Soyletir G, Mulazimoglu L. Delftia acidovorans: a rare pathogen in immunocompetent and immunocompromised patients. Can J Infect Dis Med Microbiol. 2015;26(5):277–9.CrossRef Bilgin H, Sarmis A, Tigen E, Soyletir G, Mulazimoglu L. Delftia acidovorans: a rare pathogen in immunocompetent and immunocompromised patients. Can J Infect Dis Med Microbiol. 2015;26(5):277–9.CrossRef
24.
go back to reference Kimura K, Hagiya H, Nishi I, Yoshida H, Tomono K. Roseomonas mucosa bacteremia in a neutropenic child: a case report and literature review. IDCases. 2018;14:e00469.CrossRef Kimura K, Hagiya H, Nishi I, Yoshida H, Tomono K. Roseomonas mucosa bacteremia in a neutropenic child: a case report and literature review. IDCases. 2018;14:e00469.CrossRef
25.
go back to reference Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015;45(6):568–85.CrossRef Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015;45(6):568–85.CrossRef
26.
go back to reference Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, et al. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother. 2019;63(7):e00355–19. Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, et al. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother. 2019;63(7):e00355–19.
27.
go back to reference Vaishnavi C. Translocation of gut flora and its role in sepsis. Indian J Med Microbiol. 2013;31(4):334–42.CrossRef Vaishnavi C. Translocation of gut flora and its role in sepsis. Indian J Med Microbiol. 2013;31(4):334–42.CrossRef
28.
go back to reference Castillo DJ, Rifkin RF, Cowan DA, Potgieter M. The healthy human blood microbiome: Fact or fiction? Front Cell Infect Microbiol. 2019;9:148.CrossRef Castillo DJ, Rifkin RF, Cowan DA, Potgieter M. The healthy human blood microbiome: Fact or fiction? Front Cell Infect Microbiol. 2019;9:148.CrossRef
29.
go back to reference Rhim JW, Kang HM, Han JW, Lee KY. A presumed etiology of Kawasaki disease based on epidemiological comparison with infectious or immune-mediated diseases. Front Pediatr. 2019;7:202.CrossRef Rhim JW, Kang HM, Han JW, Lee KY. A presumed etiology of Kawasaki disease based on epidemiological comparison with infectious or immune-mediated diseases. Front Pediatr. 2019;7:202.CrossRef
30.
go back to reference Hara T, Nakashima Y, Sakai Y, Nishio H, Motomura Y, Yamasaki S. Kawasaki disease: a matter of innate immunity. Clin Exp Immunol. 2016;186(2):134–43.CrossRef Hara T, Nakashima Y, Sakai Y, Nishio H, Motomura Y, Yamasaki S. Kawasaki disease: a matter of innate immunity. Clin Exp Immunol. 2016;186(2):134–43.CrossRef
31.
go back to reference Nakamura A, Ikeda K, Hamaoka K. Aetiological significance of infectious stimuli in Kawasaki disease. Front Pediatr. 2019;7:244.CrossRef Nakamura A, Ikeda K, Hamaoka K. Aetiological significance of infectious stimuli in Kawasaki disease. Front Pediatr. 2019;7:244.CrossRef
32.
go back to reference Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607–8.CrossRef Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607–8.CrossRef
33.
go back to reference Licciardi F, Pruccoli G, Denina M, Parodi E, Taglietto M, Rosati S, et al. SARS-CoV-2-induced Kawasaki-like Hyperinflammatory syndrome: a novel COVID phenotype in children. Pediatrics. 2020;146(2):e20201711.CrossRef Licciardi F, Pruccoli G, Denina M, Parodi E, Taglietto M, Rosati S, et al. SARS-CoV-2-induced Kawasaki-like Hyperinflammatory syndrome: a novel COVID phenotype in children. Pediatrics. 2020;146(2):e20201711.CrossRef
34.
go back to reference Shirato K, Imada Y, Kawase M, Nakagaki K, Matsuyama S, Taguchi F. Possible involvement of infection with human coronavirus 229E, but not NL63, in Kawasaki disease. J Med Virol. 2014;86(12):2146–53.CrossRef Shirato K, Imada Y, Kawase M, Nakagaki K, Matsuyama S, Taguchi F. Possible involvement of infection with human coronavirus 229E, but not NL63, in Kawasaki disease. J Med Virol. 2014;86(12):2146–53.CrossRef
35.
go back to reference Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-march 2020: retrospective cohort study. Bmj. 2020;369:m1443.CrossRef Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-march 2020: retrospective cohort study. Bmj. 2020;369:m1443.CrossRef
36.
go back to reference Kim Y-J, Park H, Choi YY, Kim YK, Yoon Y, Kim K-R, et al. Defining association between covid-19 and the multisystem inflammatory syndrome in children through the pandemic. J Korean Med Sci. 2020;35(22):e204.CrossRef Kim Y-J, Park H, Choi YY, Kim YK, Yoon Y, Kim K-R, et al. Defining association between covid-19 and the multisystem inflammatory syndrome in children through the pandemic. J Korean Med Sci. 2020;35(22):e204.CrossRef
37.
go back to reference Lee K-Y, Rhim J-W, Kang J-H. Immunopathogenesis of COVID-19 and early immunomodulators. Clin Exp Pediatr. 2020;63(7):239–50.CrossRef Lee K-Y, Rhim J-W, Kang J-H. Immunopathogenesis of COVID-19 and early immunomodulators. Clin Exp Pediatr. 2020;63(7):239–50.CrossRef
38.
go back to reference L'Huillier AG, Brito F, Wagner N, Cordey S, Zdobnov E, Posfay-Barbe KM, et al. Identification of viral signatures using high-throughput sequencing on blood of patients with Kawasaki disease. Front Pediatr. 2019;7:524.CrossRef L'Huillier AG, Brito F, Wagner N, Cordey S, Zdobnov E, Posfay-Barbe KM, et al. Identification of viral signatures using high-throughput sequencing on blood of patients with Kawasaki disease. Front Pediatr. 2019;7:524.CrossRef
39.
go back to reference Hamada H, Sekizuka T, Oba K, Katano H, Kinumaki A, Terai M, et al. Comprehensive pathogen detection associated with four recurrent episodes of Kawasaki disease in a patient during a single year using next-generation sequencing. JMM Case Rep. 2016;3(1):e005019.CrossRef Hamada H, Sekizuka T, Oba K, Katano H, Kinumaki A, Terai M, et al. Comprehensive pathogen detection associated with four recurrent episodes of Kawasaki disease in a patient during a single year using next-generation sequencing. JMM Case Rep. 2016;3(1):e005019.CrossRef
Metadata
Title
Comprehensive pathogen detection in sera of Kawasaki disease patients by high-throughput sequencing: a retrospective exploratory study
Authors
Yuka Torii
Kazuhiro Horiba
Satoshi Hayano
Taichi Kato
Takako Suzuki
Jun-ichi Kawada
Yoshiyuki Takahashi
Seiji Kojima
Yusuke Okuno
Tomoo Ogi
Yoshinori Ito
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2020
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-020-02380-7

Other articles of this Issue 1/2020

BMC Pediatrics 1/2020 Go to the issue