Skip to main content
Top
Published in: Pediatric Rheumatology 1/2021

Open Access 01-12-2021 | Juvenile Rheumatoid Arthritis | Research article

Association between high mobility group box 1 protein and juvenile idiopathic arthritis: a prospective longitudinal study

Authors: Dan Xu, Yu Zhang, Zhi-Yong Zhang, Xue-Mei Tang

Published in: Pediatric Rheumatology | Issue 1/2021

Login to get access

Abstract

Objective

To analyze the levels of high mobility group box 1 (HMGB1) protein on different courses of juvenile idiopathic arthritis (JIA).

Methods

In our prospective longitudinal study, children with JIA were included with their blood samples collected at the first visit, 1-month, 3-month, and 6-month follow-up, respectively. Samples were also collected from healthy controls and children with reactive arthritis at the first visit. Levels of HMGB1 were determined using enzyme-linked immunosorbent assays. Clinical disease characteristics and routine laboratory findings were analyzed as well.

Results

A total of 64 children were enrolled, of whom 31 (48.4%) were female. The median age at the first visit for participants with JIA was 9.25 years (range, 1.42–15.42) and the median duration of disease was 2.38 months (range, 1.53–49.31). Serum HMGB1 levels at the first visit were significantly elevated in children with systemic JIA compared with other groups, and so were in enthesitis-related arthritis versus healthy controls. Significant correlations were established at the first visit between HMGB1 levels and duration of disease, C-reactive protein, percentage of neutrophils, and ferritin. Data from all samples revealed that serum HMGB1 levels in JIA were significantly associated with erythrocyte sedimentation rates, C-reactive protein, percentage of neutrophils, and disease activity scores.

Conclusions

Serum HMGB1 may be associated with clinical disease activity of JIA and specifically increased at the first visit in children with systemic JIA, suggesting its function as a sensitive inflammatory marker. Further large-scale studies are warranted to explore its spectrum in JIA.
Literature
1.
go back to reference Prakken B, Albani S, Martini A. Juvenile idiopathic arthritis. Lancet. 2011;9783:2138–49.CrossRef Prakken B, Albani S, Martini A. Juvenile idiopathic arthritis. Lancet. 2011;9783:2138–49.CrossRef
2.
go back to reference Harrold LR, Salman C, Shoor S, et al. Incidence and prevalence of juvenile idiopathic arthritis among children in a managed care population, 1996–2009. J Rheumatol. 2013;7:1218–25.CrossRef Harrold LR, Salman C, Shoor S, et al. Incidence and prevalence of juvenile idiopathic arthritis among children in a managed care population, 1996–2009. J Rheumatol. 2013;7:1218–25.CrossRef
3.
go back to reference Shiff NJ, Oen K, Kroeker K, Lix LM. Trends in population-based incidence and prevalence of juvenile idiopathic arthritis in Manitoba, Canada. Arthritis Care Res. 2019;3:413–8. Shiff NJ, Oen K, Kroeker K, Lix LM. Trends in population-based incidence and prevalence of juvenile idiopathic arthritis in Manitoba, Canada. Arthritis Care Res. 2019;3:413–8.
4.
go back to reference Petty RE, Southwood TR, Manners P, et al. International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;2:390–2. Petty RE, Southwood TR, Manners P, et al. International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;2:390–2.
6.
go back to reference Shah BS, Burt KG, Jacobsen T, et al. High mobility group Box-1 induces pro-inflammatory signaling in human nucleus pulposus cells via toll-like receptor 4-dependent pathway. J Orthop Res. 2019;1:220–31.CrossRef Shah BS, Burt KG, Jacobsen T, et al. High mobility group Box-1 induces pro-inflammatory signaling in human nucleus pulposus cells via toll-like receptor 4-dependent pathway. J Orthop Res. 2019;1:220–31.CrossRef
8.
go back to reference Lukić IK, Jelusić-Drazić M, Kovacić N, Grcević D. Damage-associated molecular patterns--emerging targets for biologic therapy of childhood Arthritides. Inflamm Allergy Drug Targets. 2009;2:139–45.CrossRef Lukić IK, Jelusić-Drazić M, Kovacić N, Grcević D. Damage-associated molecular patterns--emerging targets for biologic therapy of childhood Arthritides. Inflamm Allergy Drug Targets. 2009;2:139–45.CrossRef
9.
go back to reference Abdulahad DA, Westra J, Bijzet J, Limburg PC, Kallenberg CG, Bijl M. High mobility group box 1 (HMGB1) and anti-HMGB1 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Arthritis Res Ther. 2011;3:R71.CrossRef Abdulahad DA, Westra J, Bijzet J, Limburg PC, Kallenberg CG, Bijl M. High mobility group box 1 (HMGB1) and anti-HMGB1 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Arthritis Res Ther. 2011;3:R71.CrossRef
10.
go back to reference Wang C, Miao Y, Wu X, et al. Serum HMGB1 serves as a novel laboratory Indicator reflecting disease activity and treatment response in ankylosing spondylitis patients. J Immunol Res. 2016;6537248. Wang C, Miao Y, Wu X, et al. Serum HMGB1 serves as a novel laboratory Indicator reflecting disease activity and treatment response in ankylosing spondylitis patients. J Immunol Res. 2016;6537248.
11.
go back to reference Taniguchi N, Kawakami Y, Maruyama I, Lotz M. HMGB proteins and arthritis. Hum Cell. 2018;1:1–9.CrossRef Taniguchi N, Kawakami Y, Maruyama I, Lotz M. HMGB proteins and arthritis. Hum Cell. 2018;1:1–9.CrossRef
12.
go back to reference Rosenberg AM, Cordeiro DM. Relationship between sex and antibodies to high mobility group proteins 1 and 2 in juvenile idiopathic arthritis. J Rheumatol. 2000;10:2489–93. Rosenberg AM, Cordeiro DM. Relationship between sex and antibodies to high mobility group proteins 1 and 2 in juvenile idiopathic arthritis. J Rheumatol. 2000;10:2489–93.
13.
go back to reference Schierbeck H, Pullerits R, Pruunsild C, et al. HMGB1 levels are increased in patients with juvenile idiopathic arthritis, correlate with early onset of disease, and are independent of disease duration. J Rheumatol. 2013;9:1604–13.CrossRef Schierbeck H, Pullerits R, Pruunsild C, et al. HMGB1 levels are increased in patients with juvenile idiopathic arthritis, correlate with early onset of disease, and are independent of disease duration. J Rheumatol. 2013;9:1604–13.CrossRef
14.
go back to reference Pullerits R, Schierbeck H, Uibo K, et al. High mobility group box protein 1-a prognostic marker for structural joint damage in 10-year follow-up of patients with juvenile idiopathic arthritis. Semin Arthritis Rheum. 2017;4:444–50.CrossRef Pullerits R, Schierbeck H, Uibo K, et al. High mobility group box protein 1-a prognostic marker for structural joint damage in 10-year follow-up of patients with juvenile idiopathic arthritis. Semin Arthritis Rheum. 2017;4:444–50.CrossRef
15.
go back to reference Courcoul A, Brinster A, Decullier E, et al. A Bicentre Retrospective Study of Features and Outcomes of Patients with Reactive Arthritis. Joint Bone Spine. 2018;2:201–5.CrossRef Courcoul A, Brinster A, Decullier E, et al. A Bicentre Retrospective Study of Features and Outcomes of Patients with Reactive Arthritis. Joint Bone Spine. 2018;2:201–5.CrossRef
16.
go back to reference Bulatović CM, de Vries LD, Vastert SJ, Heijstek MW, Wulffraat NM. Interpretation of the juvenile arthritis disease activity score: responsiveness, clinically important differences and levels of disease activity in prospective cohorts of patients with juvenile idiopathic arthritis. Rheumatology (Oxford). 2014;2:307–12.CrossRef Bulatović CM, de Vries LD, Vastert SJ, Heijstek MW, Wulffraat NM. Interpretation of the juvenile arthritis disease activity score: responsiveness, clinically important differences and levels of disease activity in prospective cohorts of patients with juvenile idiopathic arthritis. Rheumatology (Oxford). 2014;2:307–12.CrossRef
17.
go back to reference Ringold S, Ward TM, Wallace CA. Disease activity and fatigue in juvenile idiopathic arthritis. Arthritis Care Res (Hoboken). 2013;3:391–7.CrossRef Ringold S, Ward TM, Wallace CA. Disease activity and fatigue in juvenile idiopathic arthritis. Arthritis Care Res (Hoboken). 2013;3:391–7.CrossRef
18.
go back to reference Weiss PF, Colbert RA, Xiao R, et al. Development and retrospective validation of the juvenile Spondyloarthritis disease activity index. Arthritis Care Res (Hoboken). 2014;12:1775–82.CrossRef Weiss PF, Colbert RA, Xiao R, et al. Development and retrospective validation of the juvenile Spondyloarthritis disease activity index. Arthritis Care Res (Hoboken). 2014;12:1775–82.CrossRef
19.
go back to reference Tibaldi J, Pistorio A, Aldera E, et al. Development and initial validation of a composite disease activity score for systemic juvenile idiopathic arthritis. Rheumatology (Oxford). 2020;11:3505–14.CrossRef Tibaldi J, Pistorio A, Aldera E, et al. Development and initial validation of a composite disease activity score for systemic juvenile idiopathic arthritis. Rheumatology (Oxford). 2020;11:3505–14.CrossRef
20.
go back to reference Wittemann B, Neuer G, Michels H, Truckenbrodt H, Bautz FA. Autoantibodies to nonhistone chromosomal proteins HMG-1 and HMG-2 in sera of patients with juvenile rheumatoid arthritis. Arthritis Rheum. 1990;9:1378–83.CrossRef Wittemann B, Neuer G, Michels H, Truckenbrodt H, Bautz FA. Autoantibodies to nonhistone chromosomal proteins HMG-1 and HMG-2 in sera of patients with juvenile rheumatoid arthritis. Arthritis Rheum. 1990;9:1378–83.CrossRef
21.
go back to reference Jung F, Neuer G, Bautz FA. Antibodies against a peptide sequence located in the linker region of the HMG-1/2 box domains in sera from patients with juvenile rheumatoid arthritis. Arthritis Rheum. 1997;10:1803–9.CrossRef Jung F, Neuer G, Bautz FA. Antibodies against a peptide sequence located in the linker region of the HMG-1/2 box domains in sera from patients with juvenile rheumatoid arthritis. Arthritis Rheum. 1997;10:1803–9.CrossRef
22.
go back to reference Rezaei E, Hogan D, Trost B, et al. Clinical and associated inflammatory biomarker features predictive of short-term outcomes in non-systemic juvenile idiopathic arthritis. Rheumatology (Oxford). 2020;9:2402–11.CrossRef Rezaei E, Hogan D, Trost B, et al. Clinical and associated inflammatory biomarker features predictive of short-term outcomes in non-systemic juvenile idiopathic arthritis. Rheumatology (Oxford). 2020;9:2402–11.CrossRef
23.
go back to reference Rezaei E, Hogan D, Trost B, et al. Associations of clinical and inflammatory biomarker clusters with juvenile idiopathic arthritis categories. Rheumatology (Oxford). 2020;5:1066–75.CrossRef Rezaei E, Hogan D, Trost B, et al. Associations of clinical and inflammatory biomarker clusters with juvenile idiopathic arthritis categories. Rheumatology (Oxford). 2020;5:1066–75.CrossRef
25.
go back to reference Bobek D, Grčević D, Kovačić N, Lukić IK, Jelušić M. The presence of high mobility group Box-1 and soluble receptor for advanced glycation end-products in juvenile idiopathic arthritis and juvenile systemic lupus erythematosus. Pediatr Rheumatol Online J. 2014;50. Bobek D, Grčević D, Kovačić N, Lukić IK, Jelušić M. The presence of high mobility group Box-1 and soluble receptor for advanced glycation end-products in juvenile idiopathic arthritis and juvenile systemic lupus erythematosus. Pediatr Rheumatol Online J. 2014;50.
26.
go back to reference Weiss PF. Update on Enthesitis-related arthritis. Curr Opin Rheumatol. 2016;5:530–6.CrossRef Weiss PF. Update on Enthesitis-related arthritis. Curr Opin Rheumatol. 2016;5:530–6.CrossRef
27.
go back to reference Lamot L, Borovecki F, Tambic BL, et al. Aberrant expression of shared master-key genes contributes to the Immunopathogenesis in patients with juvenile Spondyloarthritis. PLoS One. 2014;12:e115416.CrossRef Lamot L, Borovecki F, Tambic BL, et al. Aberrant expression of shared master-key genes contributes to the Immunopathogenesis in patients with juvenile Spondyloarthritis. PLoS One. 2014;12:e115416.CrossRef
28.
go back to reference Barendregt AM, Mazzoli V, van Gulik EC, et al. Juvenile idiopathic arthritis: diffusion-weighted MRI in the assessment of arthritis in the knee. Radiology. 2020;2:373–80.CrossRef Barendregt AM, Mazzoli V, van Gulik EC, et al. Juvenile idiopathic arthritis: diffusion-weighted MRI in the assessment of arthritis in the knee. Radiology. 2020;2:373–80.CrossRef
29.
go back to reference Basra H, Humphries PD. Juvenile idiopathic arthritis: what is the utility of ultrasound? Br J Radiol. 2017;1073:20160920.CrossRef Basra H, Humphries PD. Juvenile idiopathic arthritis: what is the utility of ultrasound? Br J Radiol. 2017;1073:20160920.CrossRef
30.
go back to reference Martini A, Ravelli A, Avcin T, et al. Toward new classification criteria for juvenile idiopathic arthritis: first steps, pediatric rheumatology international trials organization international consensus. J Rheumatol. 2019;2:190–7.CrossRef Martini A, Ravelli A, Avcin T, et al. Toward new classification criteria for juvenile idiopathic arthritis: first steps, pediatric rheumatology international trials organization international consensus. J Rheumatol. 2019;2:190–7.CrossRef
31.
go back to reference Nigrovic PA, Raychaudhuri S, Thompson SD. Review: genetics and the classification of arthritis in adults and children. Arthritis Rheumatol. 2018;1:7–17.CrossRef Nigrovic PA, Raychaudhuri S, Thompson SD. Review: genetics and the classification of arthritis in adults and children. Arthritis Rheumatol. 2018;1:7–17.CrossRef
32.
go back to reference Rumsey DG, Laxer RM. The challenges and opportunities of classifying childhood arthritis. Curr Rheumatol Rep. 2020;1:4.CrossRef Rumsey DG, Laxer RM. The challenges and opportunities of classifying childhood arthritis. Curr Rheumatol Rep. 2020;1:4.CrossRef
34.
go back to reference Burlingame RW, Rubin RL, Rosenberg AM. Autoantibodies to chromatin components in juvenile rheumatoid arthritis. Arthritis Rheum. 1993;6:836–41.CrossRef Burlingame RW, Rubin RL, Rosenberg AM. Autoantibodies to chromatin components in juvenile rheumatoid arthritis. Arthritis Rheum. 1993;6:836–41.CrossRef
Metadata
Title
Association between high mobility group box 1 protein and juvenile idiopathic arthritis: a prospective longitudinal study
Authors
Dan Xu
Yu Zhang
Zhi-Yong Zhang
Xue-Mei Tang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Pediatric Rheumatology / Issue 1/2021
Electronic ISSN: 1546-0096
DOI
https://doi.org/10.1186/s12969-021-00587-1

Other articles of this Issue 1/2021

Pediatric Rheumatology 1/2021 Go to the issue