Skip to main content
Top
Published in: Tumor Biology 5/2012

01-10-2012 | Research Article

JDP2 inhibits the epithelial-to-mesenchymal transition in pancreatic cancer BxPC3 cells

Authors: Zhe Liu, Ruixia Du, Jin Long, Anbing Dong, Jianpeng Fan, Kejian Guo, Yuanhong Xu

Published in: Tumor Biology | Issue 5/2012

Login to get access

Abstract

Pancreatic carcinoma is one of the most malignant and aggressive cancers. Increased motility and invasiveness of pancreatic cancer cells are believed to be associated with epithelial-to-mesenchymal transition (EMT). However, the molecular basis of EMT in pancreatic cancer cells is poorly understood. In this study, we examined the relationship between Jun dimerization protein 2 (JDP2), which is an AP-1 inhibitor, and EMT in human pancreatic carcinoma cells. We demonstrated that transforming growth factor-β1 (TGF-β1) promoted epidermal growth factor (EGF)-induced EMT in co-treated human pancreatic BxPC3 cells and that JDP2 overexpression reversed the EMT that was induced by co-treatment with TGF-β1 and EGF. These results suggest that EGF plays a principal role in EMT through its association with TGF-β1 in human pancreatic BxPC3 cells and that JDP2 may be a molecular target for pancreatic carcinoma intervention.
Literature
2.
go back to reference Huang TC, Kar S, Javle M. Personalized therapy for pancreatic cancer: myth or reality in 2010? J Gastrointest Oncol. 2010;1:24–33.PubMedPubMedCentral Huang TC, Kar S, Javle M. Personalized therapy for pancreatic cancer: myth or reality in 2010? J Gastrointest Oncol. 2010;1:24–33.PubMedPubMedCentral
5.
go back to reference Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.CrossRefPubMed Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.CrossRefPubMed
6.
go back to reference Kang Y, Massagué J. Epithelial–mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.CrossRefPubMed Kang Y, Massagué J. Epithelial–mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.CrossRefPubMed
7.
go back to reference Xie L, Law BK, Chytil AM, et al. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia (New York). 2004;6:603–10.CrossRef Xie L, Law BK, Chytil AM, et al. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia (New York). 2004;6:603–10.CrossRef
8.
go back to reference Davies M, Robinson M, Smith E, et al. Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem. 2005;95:918–31.CrossRefPubMed Davies M, Robinson M, Smith E, et al. Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem. 2005;95:918–31.CrossRefPubMed
9.
go back to reference Aronheim A, Zandi E, Hennemann H, et al. Isolation of an AP-1 repressor by a novel method for detecting protein–protein interactions. Mol Cell Biol. 1997;17:3094–102.CrossRefPubMedPubMedCentral Aronheim A, Zandi E, Hennemann H, et al. Isolation of an AP-1 repressor by a novel method for detecting protein–protein interactions. Mol Cell Biol. 1997;17:3094–102.CrossRefPubMedPubMedCentral
10.
go back to reference Jin C, Ugai H, Song J, et al. Identification of mouse Jun dimerization protein 2 as a novel repressor of ATF-2. FEBS Lett. 2001;489:34–41.CrossRefPubMed Jin C, Ugai H, Song J, et al. Identification of mouse Jun dimerization protein 2 as a novel repressor of ATF-2. FEBS Lett. 2001;489:34–41.CrossRefPubMed
11.
go back to reference Kimura M. IRF2-binding protein-1 is a JDP2 ubiquitin ligase and an inhibitor of ATF2-dependent transcription. FEBS Lett. 2008;7:317–24. Kimura M. IRF2-binding protein-1 is a JDP2 ubiquitin ligase and an inhibitor of ATF2-dependent transcription. FEBS Lett. 2008;7:317–24.
12.
go back to reference Ostrovsky O, Bengal E, Aronheim A. Induction of terminal differentiation by the c-Jun dimerization protein JDP2 in C2 myoblasts and rhabdomyosarcoma cells. J Biol Chem. 2002;277:40043–54.CrossRefPubMed Ostrovsky O, Bengal E, Aronheim A. Induction of terminal differentiation by the c-Jun dimerization protein JDP2 in C2 myoblasts and rhabdomyosarcoma cells. J Biol Chem. 2002;277:40043–54.CrossRefPubMed
13.
go back to reference Piu F, Aronheim A, Katz S, et al. AP-1 repressor protein JDP-2: inhibition of UV-mediated apoptosis through p53 down-regulation. Mol Cell Biol. 2001;21:3012–24.CrossRefPubMedPubMedCentral Piu F, Aronheim A, Katz S, et al. AP-1 repressor protein JDP-2: inhibition of UV-mediated apoptosis through p53 down-regulation. Mol Cell Biol. 2001;21:3012–24.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Nakade K, Pan J, Yamasaki T, et al. JDP2 (Jun dimerization protein 2)-deficient mouse embryonic fibroblasts are resistant to replicative senescence. J Biol Chem. 2009;284:10808–17.CrossRefPubMedPubMedCentral Nakade K, Pan J, Yamasaki T, et al. JDP2 (Jun dimerization protein 2)-deficient mouse embryonic fibroblasts are resistant to replicative senescence. J Biol Chem. 2009;284:10808–17.CrossRefPubMedPubMedCentral
16.
go back to reference Jin C, Kato K, Chimura T, et al. Regulation of histone acetylation and nucleosome assembly by transcription factor JDP2. Nat Struct Mol Biol. 2006;13:331–8.CrossRefPubMed Jin C, Kato K, Chimura T, et al. Regulation of histone acetylation and nucleosome assembly by transcription factor JDP2. Nat Struct Mol Biol. 2006;13:331–8.CrossRefPubMed
17.
go back to reference Nishioka R, Itoh S, Gui T, et al. SNAIL induces epithelial-to-mesenchymal transition in a human pancreatic cancer cell line (BxPC3) and promotes distant metastasis and invasiveness in vivo. Exp Mol Pathol. 2010;89:149–57.CrossRefPubMed Nishioka R, Itoh S, Gui T, et al. SNAIL induces epithelial-to-mesenchymal transition in a human pancreatic cancer cell line (BxPC3) and promotes distant metastasis and invasiveness in vivo. Exp Mol Pathol. 2010;89:149–57.CrossRefPubMed
18.
go back to reference Cho SG, Yi Z, Pang X, et al. Kisspeptin-10, a KISS1-derived decapeptide, inhibits tumor angiogenesis by suppressing Sp1-mediated VEGF expression and FAK/Rho GTPase activation. Cancer Res. 2009;69:7062–70.CrossRefPubMedPubMedCentral Cho SG, Yi Z, Pang X, et al. Kisspeptin-10, a KISS1-derived decapeptide, inhibits tumor angiogenesis by suppressing Sp1-mediated VEGF expression and FAK/Rho GTPase activation. Cancer Res. 2009;69:7062–70.CrossRefPubMedPubMedCentral
19.
go back to reference Ellenrieder V, Hendler SF, Boeck W, et al. Transforming growth factor beta1 treatment leads to an epithelial–mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res. 2001;61:4222–8.PubMed Ellenrieder V, Hendler SF, Boeck W, et al. Transforming growth factor beta1 treatment leads to an epithelial–mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res. 2001;61:4222–8.PubMed
20.
go back to reference Heinrich R, Livne E, Ben-Izhak O, et al. The c-Jun dimerization protein 2 inhibits cell transformation and acts as a tumor suppressor gene. J Biol Chem. 2004;279:5708–15.CrossRefPubMed Heinrich R, Livne E, Ben-Izhak O, et al. The c-Jun dimerization protein 2 inhibits cell transformation and acts as a tumor suppressor gene. J Biol Chem. 2004;279:5708–15.CrossRefPubMed
21.
go back to reference Jin C, Li H, Murata T, et al. JDP2, a repressor of AP-1, recruits an HDAC3 complex to inhibit the retinoic acid-induced differentiation of F9 cells. Mol Cell Biol. 2006;22:4815–26.CrossRef Jin C, Li H, Murata T, et al. JDP2, a repressor of AP-1, recruits an HDAC3 complex to inhibit the retinoic acid-induced differentiation of F9 cells. Mol Cell Biol. 2006;22:4815–26.CrossRef
22.
go back to reference Weiss G, Rasmussen S, Nielsen Fink L. Bifidobacterium bifidum actively changes the gene expression profile induced by Lactobacillus acidophilus in murine dendritic cells. PLoS One. 2010;5:e11065.CrossRefPubMedPubMedCentral Weiss G, Rasmussen S, Nielsen Fink L. Bifidobacterium bifidum actively changes the gene expression profile induced by Lactobacillus acidophilus in murine dendritic cells. PLoS One. 2010;5:e11065.CrossRefPubMedPubMedCentral
23.
go back to reference Wang P, Chen Z, Meng Z, et al. Dual role of Ski in pancreatic cancer cells: tumor-promoting versus metastasis-suppressive function. Carcinogenesis. 2009;30:1497–506.CrossRefPubMed Wang P, Chen Z, Meng Z, et al. Dual role of Ski in pancreatic cancer cells: tumor-promoting versus metastasis-suppressive function. Carcinogenesis. 2009;30:1497–506.CrossRefPubMed
24.
go back to reference Yasutome M, Gunn J, Korc M. Restoration of Smad4 in BxPC3 pancreatic cancer cells attenuates proliferation without altering angiogenesis. Clin Exp Metastasis. 2005;22:461–73.CrossRefPubMed Yasutome M, Gunn J, Korc M. Restoration of Smad4 in BxPC3 pancreatic cancer cells attenuates proliferation without altering angiogenesis. Clin Exp Metastasis. 2005;22:461–73.CrossRefPubMed
25.
go back to reference Shintani Y, Hollingsworth MA, Wheelock MJ. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res. 2006;66:11745–53.CrossRefPubMed Shintani Y, Hollingsworth MA, Wheelock MJ. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res. 2006;66:11745–53.CrossRefPubMed
26.
go back to reference Pan J, Yang M. The role of epithelial–mesenchymal transition in pancreatic cancer. J Gastrointest Oncol. 2011;2:151–6.PubMedPubMedCentral Pan J, Yang M. The role of epithelial–mesenchymal transition in pancreatic cancer. J Gastrointest Oncol. 2011;2:151–6.PubMedPubMedCentral
27.
go back to reference Thiery JP, Acloque H, Huang RY. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–90.CrossRefPubMed Thiery JP, Acloque H, Huang RY. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–90.CrossRefPubMed
28.
go back to reference Hsueh C. Pancreatic cancer: current standards, research updates and future directions. J Gastrointest Oncol. 2011;2:123–5.PubMedPubMedCentral Hsueh C. Pancreatic cancer: current standards, research updates and future directions. J Gastrointest Oncol. 2011;2:123–5.PubMedPubMedCentral
29.
go back to reference Kikuta K, Masamune A, Watanabe T. Pancreatic stellate cells promote epithelial–mesenchymal transition in pancreatic cancer cells. Biochem Biophys Res Commun. 2010;403:380–4.CrossRefPubMed Kikuta K, Masamune A, Watanabe T. Pancreatic stellate cells promote epithelial–mesenchymal transition in pancreatic cancer cells. Biochem Biophys Res Commun. 2010;403:380–4.CrossRefPubMed
30.
go back to reference Onoue T, Uchida D, Begum NM. Epithelial–mesenchymal transition induced by the stromal cell-derived factor-1/CXCR4 system in oral squamous cell carcinoma cells. Int J Oncol. 2006;29:1133–8.PubMed Onoue T, Uchida D, Begum NM. Epithelial–mesenchymal transition induced by the stromal cell-derived factor-1/CXCR4 system in oral squamous cell carcinoma cells. Int J Oncol. 2006;29:1133–8.PubMed
31.
go back to reference Yuanhong X, Feng X, Qingchang L, et al. Downregulation of AP-1 repressor JDP2 is associated with tumor metastasis and poor prognosis in patients with pancreatic carcinoma. Int J Biol Markers. 2010;25:136–40.PubMed Yuanhong X, Feng X, Qingchang L, et al. Downregulation of AP-1 repressor JDP2 is associated with tumor metastasis and poor prognosis in patients with pancreatic carcinoma. Int J Biol Markers. 2010;25:136–40.PubMed
32.
go back to reference Lerdrup M, Holmberg C, Dietrich N, et al. Depletion of the AP-1 repressor JDP2 induces cell death similar to apoptosis. Biochim Biophys Acta. 2005;1745:29–37.CrossRefPubMed Lerdrup M, Holmberg C, Dietrich N, et al. Depletion of the AP-1 repressor JDP2 induces cell death similar to apoptosis. Biochim Biophys Acta. 2005;1745:29–37.CrossRefPubMed
33.
go back to reference Pan J, Nakade K, Huang YC, et al. Suppression of cell-cycle progression by Jun dimerization protein-2 (JDP2) involves downregulation of cyclin-A2. Oncogene. 2010;29:6245–56.CrossRefPubMedPubMedCentral Pan J, Nakade K, Huang YC, et al. Suppression of cell-cycle progression by Jun dimerization protein-2 (JDP2) involves downregulation of cyclin-A2. Oncogene. 2010;29:6245–56.CrossRefPubMedPubMedCentral
34.
go back to reference Benbrook DM, Jones NC. Heterodimer formation between CREB and JUN proteins. Oncogene. 1990;5:295–302.PubMed Benbrook DM, Jones NC. Heterodimer formation between CREB and JUN proteins. Oncogene. 1990;5:295–302.PubMed
35.
go back to reference Jensen K, Afroze S, Munshi MK, et al. Mechanisms for nicotine in the development and progression of gastrointestinal cancers. Transl Gastrointest Cancer. 2012;1:81–7.PubMedPubMedCentral Jensen K, Afroze S, Munshi MK, et al. Mechanisms for nicotine in the development and progression of gastrointestinal cancers. Transl Gastrointest Cancer. 2012;1:81–7.PubMedPubMedCentral
36.
go back to reference Berger AJ, Kluger HM, Li N, Kielhorn E, Halaban R, et al. Subcellular localization of activating transcription factor 2 in melanoma specimens predicts patient survival. Cancer Res. 2003;63:8103–7.PubMed Berger AJ, Kluger HM, Li N, Kielhorn E, Halaban R, et al. Subcellular localization of activating transcription factor 2 in melanoma specimens predicts patient survival. Cancer Res. 2003;63:8103–7.PubMed
37.
go back to reference Lee SH, Bahn JH, Whitlock NC, Baek SJ. Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways. Oncogene. 2010;29(37):5182–92.CrossRefPubMedPubMedCentral Lee SH, Bahn JH, Whitlock NC, Baek SJ. Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways. Oncogene. 2010;29(37):5182–92.CrossRefPubMedPubMedCentral
Metadata
Title
JDP2 inhibits the epithelial-to-mesenchymal transition in pancreatic cancer BxPC3 cells
Authors
Zhe Liu
Ruixia Du
Jin Long
Anbing Dong
Jianpeng Fan
Kejian Guo
Yuanhong Xu
Publication date
01-10-2012
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2012
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-012-0404-5

Other articles of this Issue 5/2012

Tumor Biology 5/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine