Skip to main content
Top
Published in: BMC Physiology 1/2011

Open Access 01-12-2011 | Research article

JAK/STAT signaling and human in vitro myogenesis

Authors: Marissa K Trenerry, Paul A Della Gatta, David Cameron-Smith

Published in: BMC Physiology | Issue 1/2011

Login to get access

Abstract

Background

A population of satellite cells exists in skeletal muscle. These cells are thought to be primarily responsible for postnatal muscle growth and injury-induced muscle regeneration. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade has a crucial role in regulating myogenesis. In rodent skeletal muscle, STAT3 is essential for satellite cell migration and myogenic differentiation, regulating the expression of myogenic factors. The aim of the present study was to investigate and compare the expression profile of JAK/STAT family members, using cultured primary human skeletal muscle cells.

Results

Near confluent proliferating myoblasts were induced to differentiate for 1, 5 or 10 days. During these developmental stages, members of the JAK/STAT family were examined, along with factors known to regulate myogenesis. We demonstrate the phosphorylation of JAK1 and STAT1 only during myoblast proliferation, while JAK2 and STAT3 phosphorylation increases during differentiation. These increases were correlated with the upregulation of genes associated with muscle maturation and hypertrophy.

Conclusions

Taken together, these results provide insight into JAK/STAT signaling in human skeletal muscle development, and confirm recent observations in rodents.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wagers AJ, Conboy IM: Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell. 2005, 122 (5): 659-67. 10.1016/j.cell.2005.08.021.PubMedCrossRef Wagers AJ, Conboy IM: Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell. 2005, 122 (5): 659-67. 10.1016/j.cell.2005.08.021.PubMedCrossRef
2.
go back to reference Charge SB, Rudnicki MA: Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004, 84 (1): 209-38. 10.1152/physrev.00019.2003.PubMedCrossRef Charge SB, Rudnicki MA: Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004, 84 (1): 209-38. 10.1152/physrev.00019.2003.PubMedCrossRef
3.
go back to reference Hawke TJ, Garry DJ: Myogenic satellite cells: physiology to molecular biology. J App Physiol. 2001, 91 (2): 534-51. Hawke TJ, Garry DJ: Myogenic satellite cells: physiology to molecular biology. J App Physiol. 2001, 91 (2): 534-51.
4.
go back to reference Lassar AB, Skapek SX, Novitch B: Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Current Opinion in Cell Biology. 1994, 6 (6): 788-794. 10.1016/0955-0674(94)90046-9.PubMedCrossRef Lassar AB, Skapek SX, Novitch B: Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Current Opinion in Cell Biology. 1994, 6 (6): 788-794. 10.1016/0955-0674(94)90046-9.PubMedCrossRef
5.
go back to reference Yablonka-Reuveni Z, et al: Defining the transcriptional signature of skeletal muscle stem cells. J Anim Sci. 2008, 86 (14 Suppl): E207-16.PubMedPubMedCentral Yablonka-Reuveni Z, et al: Defining the transcriptional signature of skeletal muscle stem cells. J Anim Sci. 2008, 86 (14 Suppl): E207-16.PubMedPubMedCentral
6.
go back to reference Montarras D, et al: Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis. New Biologist. 1991, 3 (6): 592-600.PubMed Montarras D, et al: Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis. New Biologist. 1991, 3 (6): 592-600.PubMed
7.
go back to reference Zammit PS, et al: Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?. Journal of Cell Biology. 2004, 166 (3): 347-357. 10.1083/jcb.200312007.PubMedPubMedCentralCrossRef Zammit PS, et al: Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?. Journal of Cell Biology. 2004, 166 (3): 347-357. 10.1083/jcb.200312007.PubMedPubMedCentralCrossRef
8.
go back to reference Coolican SA, et al: The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem. 1997, 272 (10): 6653-62. 10.1074/jbc.272.10.6653.PubMedCrossRef Coolican SA, et al: The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem. 1997, 272 (10): 6653-62. 10.1074/jbc.272.10.6653.PubMedCrossRef
9.
go back to reference Jo C, et al: Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. Biochim Biophys Acta. 2005, 1743 (3): 187-97. 10.1016/j.bbamcr.2004.11.002.PubMedCrossRef Jo C, et al: Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. Biochim Biophys Acta. 2005, 1743 (3): 187-97. 10.1016/j.bbamcr.2004.11.002.PubMedCrossRef
10.
go back to reference Bennett AM, Tonks NK: Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science. 1997, 278 (5341): 1288-91. 10.1126/science.278.5341.1288.PubMedCrossRef Bennett AM, Tonks NK: Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science. 1997, 278 (5341): 1288-91. 10.1126/science.278.5341.1288.PubMedCrossRef
11.
go back to reference Cuenda A, Cohen P: Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. J Biol Chem. 1999, 274 (7): 4341-6. 10.1074/jbc.274.7.4341.PubMedCrossRef Cuenda A, Cohen P: Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. J Biol Chem. 1999, 274 (7): 4341-6. 10.1074/jbc.274.7.4341.PubMedCrossRef
12.
go back to reference Zetser A, Gredinger E, Bengal E: p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J Biol Chem. 1999, 274 (8): 5193-200. 10.1074/jbc.274.8.5193.PubMedCrossRef Zetser A, Gredinger E, Bengal E: p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J Biol Chem. 1999, 274 (8): 5193-200. 10.1074/jbc.274.8.5193.PubMedCrossRef
13.
go back to reference Wu Z, et al: p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol. 2000, 20 (11): 3951-64. 10.1128/MCB.20.11.3951-3964.2000.PubMedPubMedCentralCrossRef Wu Z, et al: p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol. 2000, 20 (11): 3951-64. 10.1128/MCB.20.11.3951-3964.2000.PubMedPubMedCentralCrossRef
14.
go back to reference Megeney LA, et al: bFGF and LIF signaling activates STAT3 in proliferating myoblasts. Dev Genet. 1996, 19 (2): 139-45. 10.1002/(SICI)1520-6408(1996)19:2<139::AID-DVG5>3.0.CO;2-A.PubMedCrossRef Megeney LA, et al: bFGF and LIF signaling activates STAT3 in proliferating myoblasts. Dev Genet. 1996, 19 (2): 139-45. 10.1002/(SICI)1520-6408(1996)19:2<139::AID-DVG5>3.0.CO;2-A.PubMedCrossRef
15.
go back to reference Miller KJ, et al: Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. American Journal of Physiology Cell Physiology. 2000, 278 (1): C174-181.PubMed Miller KJ, et al: Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. American Journal of Physiology Cell Physiology. 2000, 278 (1): C174-181.PubMed
16.
go back to reference Sun L, et al: JAK1-STAT1-STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts. J Cell Biol. 2007, 179 (1): 129-38. 10.1083/jcb.200703184.PubMedPubMedCentralCrossRef Sun L, et al: JAK1-STAT1-STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts. J Cell Biol. 2007, 179 (1): 129-38. 10.1083/jcb.200703184.PubMedPubMedCentralCrossRef
17.
go back to reference Diao Y, Wang X, Wu Z: SOCS1, SOCS3, and PIAS1 promote myogenic differentiation by inhibiting the leukemia inhibitory factor-induced JAK1/STAT1/STAT3 pathway. Mol Cell Biol. 2009, 29 (18): 5084-93. 10.1128/MCB.00267-09.PubMedPubMedCentralCrossRef Diao Y, Wang X, Wu Z: SOCS1, SOCS3, and PIAS1 promote myogenic differentiation by inhibiting the leukemia inhibitory factor-induced JAK1/STAT1/STAT3 pathway. Mol Cell Biol. 2009, 29 (18): 5084-93. 10.1128/MCB.00267-09.PubMedPubMedCentralCrossRef
18.
go back to reference Serrano AL, et al: Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008, 7 (1): 33-44. 10.1016/j.cmet.2007.11.011.PubMedCrossRef Serrano AL, et al: Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008, 7 (1): 33-44. 10.1016/j.cmet.2007.11.011.PubMedCrossRef
19.
go back to reference Spangenburg EE, Booth FW: Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation. Am J Physiol Cell Physiol. 2002, 283 (1): C204-11.PubMedCrossRef Spangenburg EE, Booth FW: Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation. Am J Physiol Cell Physiol. 2002, 283 (1): C204-11.PubMedCrossRef
20.
go back to reference Yang Y, et al: STAT3 induces muscle stem cell differentiation by interaction with myoD. Cytokine. 2009, 46 (1): 137-41. 10.1016/j.cyto.2008.12.015.PubMedCrossRef Yang Y, et al: STAT3 induces muscle stem cell differentiation by interaction with myoD. Cytokine. 2009, 46 (1): 137-41. 10.1016/j.cyto.2008.12.015.PubMedCrossRef
21.
go back to reference Kami K, Senba E: In vivo activation of STAT3 signaling in satellite cells and myofibers in regenerating rat skeletal muscles. J Histochem Cytochem. 2002, 50 (12): 1579-89.PubMedCrossRef Kami K, Senba E: In vivo activation of STAT3 signaling in satellite cells and myofibers in regenerating rat skeletal muscles. J Histochem Cytochem. 2002, 50 (12): 1579-89.PubMedCrossRef
23.
go back to reference Muscat GE, et al: The human skeletal alpha-actin gene is regulated by a muscle-specific enhancer that binds three nuclear factors. Gene Expression. 1992, 2 (2): 111-126.PubMed Muscat GE, et al: The human skeletal alpha-actin gene is regulated by a muscle-specific enhancer that binds three nuclear factors. Gene Expression. 1992, 2 (2): 111-126.PubMed
24.
go back to reference Spangenburg EE: SOCS-3 induces myoblast differentiation. J Biol Chem. 2005, 280 (11): 10749-58. 10.1074/jbc.M410604200.PubMedCrossRef Spangenburg EE: SOCS-3 induces myoblast differentiation. J Biol Chem. 2005, 280 (11): 10749-58. 10.1074/jbc.M410604200.PubMedCrossRef
25.
go back to reference Chin YE, et al: Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science. 1996, 272 (5262): 719-22. 10.1126/science.272.5262.719.PubMedCrossRef Chin YE, et al: Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science. 1996, 272 (5262): 719-22. 10.1126/science.272.5262.719.PubMedCrossRef
26.
27.
go back to reference Gaster M, et al: A cellular model system of differentiated human myotubes. Apmis. 2001, 109 (11): 735-44. 10.1034/j.1600-0463.2001.d01-140.x.PubMedCrossRef Gaster M, et al: A cellular model system of differentiated human myotubes. Apmis. 2001, 109 (11): 735-44. 10.1034/j.1600-0463.2001.d01-140.x.PubMedCrossRef
28.
go back to reference Bergstrom J: Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest. 1975, 35 (7): 609-16.PubMedCrossRef Bergstrom J: Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest. 1975, 35 (7): 609-16.PubMedCrossRef
29.
go back to reference Evans WJ, Phinney SD, Young VR: Suction applied to a muscle biopsy maximizes sample size. Med Sci Sports Exerc. 1982, 14 (1): 101-2.PubMed Evans WJ, Phinney SD, Young VR: Suction applied to a muscle biopsy maximizes sample size. Med Sci Sports Exerc. 1982, 14 (1): 101-2.PubMed
30.
go back to reference Trenerry MK, et al: Exercise-induced activation of STAT3 signaling is increased with age. Rejuvenation Res. 2008, 11 (4): 717-24. 10.1089/rej.2007.0643.PubMedCrossRef Trenerry MK, et al: Exercise-induced activation of STAT3 signaling is increased with age. Rejuvenation Res. 2008, 11 (4): 717-24. 10.1089/rej.2007.0643.PubMedCrossRef
Metadata
Title
JAK/STAT signaling and human in vitro myogenesis
Authors
Marissa K Trenerry
Paul A Della Gatta
David Cameron-Smith
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Physiology / Issue 1/2011
Electronic ISSN: 1472-6793
DOI
https://doi.org/10.1186/1472-6793-11-6

Other articles of this Issue 1/2011

BMC Physiology 1/2011 Go to the issue