Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

Open Access 01-12-2020 | Research article

Isolation and characterization of WUPyV in polarized human airway epithelial cells

Authors: Chao Wang, Tianli Wei, Yiman Huang, Qiong Guo, Zhiping Xie, Jingdong Song, Aijun Chen, Lishu Zheng

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

Washington University polyomavirus (WUPyV) is a novel human polyomavirus detected in childwith acute respiratory infection in 2007. However, the relationship between WUPyV and respiratory diseases has yet to be established for lacking of a suitable in vitro culture system.

Methods

To isolate WUPyV with human airway epithelial (HAE) cells, the positive samples were incubated in HAE, and then the nucleic acid, VP1 protein and virions were detected using real-time PCR, immunofluorescence and electron microscopy respectively.

Results

The result showed that WUPyV could replicate effectively in HAE cells and virions with typical polyomavirus characteristics could be observed. Additionally, the entire genome sequence of the isolated strain (BJ0771) was obtained and phylogenetic analysis indicated that BJ0771 belongs to gene cluster I.

Conclusions

Our findings demonstrated clinical WUPyV strain was successfully isolated for the first time in the world and this will help unravel the etiology and pathogenic mechanisms of WUPyV in respiratory infection diseases.
Literature
1.
go back to reference Gaynor AM, Nissen MD, Whiley DM, Mackay IM, Lambert SB, Wu G, et al. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog. 2007;3:e64.CrossRef Gaynor AM, Nissen MD, Whiley DM, Mackay IM, Lambert SB, Wu G, et al. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog. 2007;3:e64.CrossRef
2.
go back to reference Torres C. Evolution and molecular epidemiology of polyomaviruses. Infect Genet Evol. 2020;79:104150.CrossRef Torres C. Evolution and molecular epidemiology of polyomaviruses. Infect Genet Evol. 2020;79:104150.CrossRef
3.
go back to reference Le BM, Demertzis LM, Wu G, Tibbets RJ, Buller R, Arens MQ, et al. Clinical and epidemiologic characterization of WU polyomavirus infection, St. Louis, Missouri. Emerg Infect Dis. 2007;13:1936–8.CrossRef Le BM, Demertzis LM, Wu G, Tibbets RJ, Buller R, Arens MQ, et al. Clinical and epidemiologic characterization of WU polyomavirus infection, St. Louis, Missouri. Emerg Infect Dis. 2007;13:1936–8.CrossRef
4.
go back to reference Zhu T, Lu QB, Zhang SY, Wo Y. Zhuang L, Zhang PH, et al. Molecular epidemiology of WU polyomavirus in hospitalized children with acute respiratory tract infection in China. Future Microbiol 2017;12:481–489. Zhu T, Lu QB, Zhang SY, Wo Y. Zhuang L, Zhang PH, et al. Molecular epidemiology of WU polyomavirus in hospitalized children with acute respiratory tract infection in China. Future Microbiol 2017;12:481–489.
5.
go back to reference Babakir-Mina M, Ciccozzi M, Perno CF, Ciotti M. The novel KI, WU, MC polyomaviruses: possible human pathogens? New Microbiol. 2011;34:1–8.PubMed Babakir-Mina M, Ciccozzi M, Perno CF, Ciotti M. The novel KI, WU, MC polyomaviruses: possible human pathogens? New Microbiol. 2011;34:1–8.PubMed
6.
go back to reference Imperiale MJ, Jiang M. Polyomavirus persistence. Annu Rev Virol. 2016;3:517–32.CrossRef Imperiale MJ, Jiang M. Polyomavirus persistence. Annu Rev Virol. 2016;3:517–32.CrossRef
7.
go back to reference Nguyen NL, Le BM, Wang D. Serologic evidence of frequent human infection with WU and KI Polyomaviruses. Emerg Infect Dis. 2009;15:1199–205.CrossRef Nguyen NL, Le BM, Wang D. Serologic evidence of frequent human infection with WU and KI Polyomaviruses. Emerg Infect Dis. 2009;15:1199–205.CrossRef
8.
go back to reference Pena GPA, Mendes GS, Dias HG, Gavazzoni LS, Amorim AR, Santos N. Human polyomavirus KI, WU, BK, and JC in healthy volunteers. Eur J Clin Microbiol Infect Dis. 2018;38:135–9.CrossRef Pena GPA, Mendes GS, Dias HG, Gavazzoni LS, Amorim AR, Santos N. Human polyomavirus KI, WU, BK, and JC in healthy volunteers. Eur J Clin Microbiol Infect Dis. 2018;38:135–9.CrossRef
9.
go back to reference Babakir-Mina M, Ciccozzi M, Perno CF, Ciotti M. The human polyomaviruses KI and WU: virological background and clinical implications. APMIS. 2013;121:746–54.CrossRef Babakir-Mina M, Ciccozzi M, Perno CF, Ciotti M. The human polyomaviruses KI and WU: virological background and clinical implications. APMIS. 2013;121:746–54.CrossRef
10.
go back to reference Uda K, Koyama-Wakai C, Shoji K, Iwase N, Motooka D, Nakamura S, et al. WU polyomavirus detected in children with severe respiratory failure. J Clin Virol. 2018;107:25–8.CrossRef Uda K, Koyama-Wakai C, Shoji K, Iwase N, Motooka D, Nakamura S, et al. WU polyomavirus detected in children with severe respiratory failure. J Clin Virol. 2018;107:25–8.CrossRef
11.
go back to reference Siebrasse EA, Pastrana DV, Nguyen NL, Wang A, Roth MJ, Holland SM, et al. WU Polyomavirus in respiratory epithelial cells from lung transplant patient with job syndrome. Emerg Infect Dis. 2015;21:103–6.CrossRef Siebrasse EA, Pastrana DV, Nguyen NL, Wang A, Roth MJ, Holland SM, et al. WU Polyomavirus in respiratory epithelial cells from lung transplant patient with job syndrome. Emerg Infect Dis. 2015;21:103–6.CrossRef
12.
go back to reference Zhang NN, Zhao LQ, Qian Y, Zhu RN, Deng J, Wang F, et al. Common WU polyomavirus infection in a Beijing population indicated by surveillance for serum IgG antibody against capsid protein VP2. World J Pediatr. 2013;9:48–52.CrossRef Zhang NN, Zhao LQ, Qian Y, Zhu RN, Deng J, Wang F, et al. Common WU polyomavirus infection in a Beijing population indicated by surveillance for serum IgG antibody against capsid protein VP2. World J Pediatr. 2013;9:48–52.CrossRef
13.
go back to reference Farsani SM, Deijs M, Dijkman R, Molenkamp R, Jeeninga RE, Ieven M, et al. Culturing of respiratory viruses in well-differentiated pseudostratified human airway epithelium as a tool to detect unknown viruses. Influenza Other Respir Viruses. 2015;9:51–7.CrossRef Farsani SM, Deijs M, Dijkman R, Molenkamp R, Jeeninga RE, Ieven M, et al. Culturing of respiratory viruses in well-differentiated pseudostratified human airway epithelium as a tool to detect unknown viruses. Influenza Other Respir Viruses. 2015;9:51–7.CrossRef
14.
go back to reference Schaap-Nutt A, Scull MA, Schmidt AC, Murphy BR, Pickles RJ. Growth restriction of an experimental live attenuated human parainfluenza virus type 2 vaccine in human ciliated airway epithelium in vitro parallels attenuation in African green monkeys. Vaccine. 2010;28:2788–98.CrossRef Schaap-Nutt A, Scull MA, Schmidt AC, Murphy BR, Pickles RJ. Growth restriction of an experimental live attenuated human parainfluenza virus type 2 vaccine in human ciliated airway epithelium in vitro parallels attenuation in African green monkeys. Vaccine. 2010;28:2788–98.CrossRef
15.
go back to reference Escaffre O, Borisevich V, Vergara LA, Wen JW, Long D, Rockx B. Characterization of Nipah virus infection in a model of human airway epithelial cells cultured at an air–liquid interface. J Gen Virol. 2016;97:1077–86.CrossRef Escaffre O, Borisevich V, Vergara LA, Wen JW, Long D, Rockx B. Characterization of Nipah virus infection in a model of human airway epithelial cells cultured at an air–liquid interface. J Gen Virol. 2016;97:1077–86.CrossRef
16.
go back to reference Shen W, Deng X, Zou W, Cheng F, Engelhardt JF, Yan Z, et al. Identification and functional analysis of novel nonstructural proteins of human Bocavirus 1. J Virol. 2015;89:10097–109.CrossRef Shen W, Deng X, Zou W, Cheng F, Engelhardt JF, Yan Z, et al. Identification and functional analysis of novel nonstructural proteins of human Bocavirus 1. J Virol. 2015;89:10097–109.CrossRef
17.
go back to reference Johnson SM, Mcnally BA, Ioannidis I, Flano E, Teng MN. Oomens AG, et al. Respiratory syncytial virus uses CX3CR1 as a receptor on primary human airway epithelial cultures. PLoS Pathog 2015;11:e1005318. Johnson SM, Mcnally BA, Ioannidis I, Flano E, Teng MN. Oomens AG, et al. Respiratory syncytial virus uses CX3CR1 as a receptor on primary human airway epithelial cultures. PLoS Pathog 2015;11:e1005318.
18.
go back to reference Whitcutt MJ, Adler KB, Wu R. A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell Dev Biol. 1988;24:420–8.CrossRef Whitcutt MJ, Adler KB, Wu R. A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell Dev Biol. 1988;24:420–8.CrossRef
19.
go back to reference Essaidi-Laziosi M, Brito F, Benaoudia S, Royston L, Cagno V, Fernandes-Rocha M, et al. Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures. J Allergy Clin Immunol. 2018;141:2074–84.CrossRef Essaidi-Laziosi M, Brito F, Benaoudia S, Royston L, Cagno V, Fernandes-Rocha M, et al. Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures. J Allergy Clin Immunol. 2018;141:2074–84.CrossRef
20.
go back to reference Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.CrossRef Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.CrossRef
21.
go back to reference Chen AJ, Dong J, Yuan XH, Bo H, Li SZ, Wang C, et al. Anti-H7N9 avian influenza a virus activity of interferon in pseudostratified human airway epithelium cell cultures. Virol J. 2019;16:44.CrossRef Chen AJ, Dong J, Yuan XH, Bo H, Li SZ, Wang C, et al. Anti-H7N9 avian influenza a virus activity of interferon in pseudostratified human airway epithelium cell cultures. Virol J. 2019;16:44.CrossRef
22.
go back to reference Ondov BD, Starrett GJ, Sappington A, Kostic A, Koren S, Buck CB, et al. Mash screen: high-throughput sequence containment estimation for genome discovery. Genome Biol. 2019;20:232.CrossRef Ondov BD, Starrett GJ, Sappington A, Kostic A, Koren S, Buck CB, et al. Mash screen: high-throughput sequence containment estimation for genome discovery. Genome Biol. 2019;20:232.CrossRef
23.
go back to reference van der Meijden E, Janssens RW, Lauber C, Bouwes Bavinck JN, Gorbalenya AE, Feltkamp MC. Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLoS Pathog. 2010;6:e1001024.CrossRef van der Meijden E, Janssens RW, Lauber C, Bouwes Bavinck JN, Gorbalenya AE, Feltkamp MC. Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLoS Pathog. 2010;6:e1001024.CrossRef
24.
go back to reference Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–100.CrossRef Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–100.CrossRef
25.
go back to reference Han TH, Chung JY, Koo JW, Kim SW, Hwang ES. WU polyomavirus in children with acute lower respiratory tract infections, South Korea. Emerg Infect Dis. 2007;13:1766–8.CrossRef Han TH, Chung JY, Koo JW, Kim SW, Hwang ES. WU polyomavirus in children with acute lower respiratory tract infections, South Korea. Emerg Infect Dis. 2007;13:1766–8.CrossRef
26.
go back to reference White MK, Gordon J, Khalili K. The rapidly expanding family of human polyomaviruses: recent developments in understanding their life cycle and role in human pathology. PLoS Pathog. 2013;9:e1003206.CrossRef White MK, Gordon J, Khalili K. The rapidly expanding family of human polyomaviruses: recent developments in understanding their life cycle and role in human pathology. PLoS Pathog. 2013;9:e1003206.CrossRef
27.
go back to reference Becker M, Dominguez M, Greune L, Soria-Martinez L, Pfleiderer MM, Schowalter R, et al. Infectious entry of Merkel cell Polyomavirus. J Virol. 2019;93:e02004–18.CrossRef Becker M, Dominguez M, Greune L, Soria-Martinez L, Pfleiderer MM, Schowalter R, et al. Infectious entry of Merkel cell Polyomavirus. J Virol. 2019;93:e02004–18.CrossRef
28.
go back to reference Gee GV, O’Hara BA, Derdowski A, Atwood WJ. Pseudovirus mimics cell entry and trafficking of the human polyomavirus JCPyV. Virus Res. 2013;178:281–6.CrossRef Gee GV, O’Hara BA, Derdowski A, Atwood WJ. Pseudovirus mimics cell entry and trafficking of the human polyomavirus JCPyV. Virus Res. 2013;178:281–6.CrossRef
29.
go back to reference Siebrasse EA, Nguyen NL, Willby MJ, Erdman DD, Menegus MA, Wang D. Multiorgan WU Polyomavirus infection in bone marrow transplant recipient. Emerg Infect Dis. 2016;22:24–31.CrossRef Siebrasse EA, Nguyen NL, Willby MJ, Erdman DD, Menegus MA, Wang D. Multiorgan WU Polyomavirus infection in bone marrow transplant recipient. Emerg Infect Dis. 2016;22:24–31.CrossRef
30.
go back to reference Moens U, Van Ghelue M, Ludvigsen M, Korup-Schulz S, Ehlers B. Early and late promoters of BK polyomavirus, Merkel cell polyomavirus, Trichodysplasia spinulosa-associated polyomavirus and human polyomavirus 12 are among the strongest of all known human polyomaviruses in 10 different cell lines. J Gen Virol. 2015;96:2293–303.CrossRef Moens U, Van Ghelue M, Ludvigsen M, Korup-Schulz S, Ehlers B. Early and late promoters of BK polyomavirus, Merkel cell polyomavirus, Trichodysplasia spinulosa-associated polyomavirus and human polyomavirus 12 are among the strongest of all known human polyomaviruses in 10 different cell lines. J Gen Virol. 2015;96:2293–303.CrossRef
31.
go back to reference Bialasiewicz S, Rockett R, Whiley DW, Abed Y, Allander T, Binks M, et al. Whole-genome characterization and genotyping of global WU Polyomavirus strains. J Virol. 2010;84:6229–34.CrossRef Bialasiewicz S, Rockett R, Whiley DW, Abed Y, Allander T, Binks M, et al. Whole-genome characterization and genotyping of global WU Polyomavirus strains. J Virol. 2010;84:6229–34.CrossRef
Metadata
Title
Isolation and characterization of WUPyV in polarized human airway epithelial cells
Authors
Chao Wang
Tianli Wei
Yiman Huang
Qiong Guo
Zhiping Xie
Jingdong Song
Aijun Chen
Lishu Zheng
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05224-y

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine