Skip to main content
Top
Published in: BMC Sports Science, Medicine and Rehabilitation 1/2013

Open Access 01-12-2013 | Research article

Is leg compression beneficial for alpine skiers?

Authors: Billy Sperlich, Dennis-Peter Born, Mikael Swarén, Yvonne Kilian, Björn Geesmann, Matthias Kohl-Bareis, Hans-Christer Holmberg

Published in: BMC Sports Science, Medicine and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

This study examined the effects of different levels of compression (0, 20 and 40 mmHg) produced by leg garments on selected psycho-physiological measures of performance while exposed to passive vibration (60 Hz, amplitude 4-6 mm) and performing 3-min of alpine skiing tuck position.

Methods

Prior to, during and following the experiment the electromygraphic (EMG) activity of different muscles, cardio-respiratory data, changes in total hemoglobin, tissue oxygenation and oscillatory movement of m. vastus lateralis, blood lactate and perceptual data of 12 highly trained alpine skiers were recorded. Maximal isometric knee extension and flexion strength, balance, and jumping performance were assessed before and after the experiment.

Results

The knee angle (−10°) and oscillatory movement (−20-25.5%) were lower with compression (P < 0.05 in all cases). The EMG activities of the tibialis anterior (20.2-28.9%), gastrocnemius medialis (4.9-15.1%), rectus femoris (9.6-23.5%), and vastus medialis (13.1-13.7%) muscles were all elevated by compression (P < 0.05 in all cases). Total hemoglobin was maintained during the 3-min period of simulated skiing with 20 or 40 mmHg compression, but the tissue saturation index was lower (P < 0.05) than with no compression. No differences in respiratory parameters, heart rate or blood lactate concentration were observed with or maximal isometric knee extension and flexion strength, balance, and jumping performance following simulated skiing for 3 min in the downhill tuck position were the same as in the absence of compression.

Conclusions

These findings demonstrate that with leg compression, alpine skiers could maintain a deeper tuck position with less perceived exertion and greater deoxygenation of the vastus lateralis muscle, with no differences in whole-body oxygen consumption or blood lactate concentration. These changes occurred without compromising maximal leg strength, jumping performance or balance. Accordingly, our results indicate that the use of lower leg compression in the range of 20-40 mmHg may improve alpine skiing performance by allowing a deeper tuck position and lowering perceived exertion.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wunderly GS, Hull ML, Maxwell S: A second generation microcomputer controlled binding system for alpine skiing research. J Biomech. 1988, 21 (4): 299-318. 10.1016/0021-9290(88)90260-6.CrossRefPubMed Wunderly GS, Hull ML, Maxwell S: A second generation microcomputer controlled binding system for alpine skiing research. J Biomech. 1988, 21 (4): 299-318. 10.1016/0021-9290(88)90260-6.CrossRefPubMed
2.
go back to reference Mester J: Movement regulation in alpine skiing. Science and Skiing. Edited by: Müller E, Schwameder H, Kornexl E, Raschner C. 1997, London: E & F Spon, 333-348. Mester J: Movement regulation in alpine skiing. Science and Skiing. Edited by: Müller E, Schwameder H, Kornexl E, Raschner C. 1997, London: E & F Spon, 333-348.
3.
go back to reference Seidel H: Myoelectric reactions to ultra-low frequency and low-frequency whole body vibration. Eur J Appl Physiol Occup Physiol. 1988, 57 (5): 558-562. 10.1007/BF00418462.CrossRefPubMed Seidel H: Myoelectric reactions to ultra-low frequency and low-frequency whole body vibration. Eur J Appl Physiol Occup Physiol. 1988, 57 (5): 558-562. 10.1007/BF00418462.CrossRefPubMed
4.
go back to reference Rittweger J, Beller G, Felsenberg D: Acute physiological effects of exhaustive whole-body vibration exercise in man. Clin Physiol. 2000, 20 (2): 134-142. 10.1046/j.1365-2281.2000.00238.x.CrossRefPubMed Rittweger J, Beller G, Felsenberg D: Acute physiological effects of exhaustive whole-body vibration exercise in man. Clin Physiol. 2000, 20 (2): 134-142. 10.1046/j.1365-2281.2000.00238.x.CrossRefPubMed
5.
go back to reference Person R, Kozhina G: Tonic vibration reflex of human limb muscles: Discharge pattern of motor units. J Electromyogr Kinesiol. 1992, 2 (1): 1-9. 10.1016/1050-6411(92)90002-Z.CrossRefPubMed Person R, Kozhina G: Tonic vibration reflex of human limb muscles: Discharge pattern of motor units. J Electromyogr Kinesiol. 1992, 2 (1): 1-9. 10.1016/1050-6411(92)90002-Z.CrossRefPubMed
6.
go back to reference Cardinale M, Lim J: Electromyography activity of vastus lateralis muscle during whole-body vibrations of different frequencies. J Strength Cond Res. 2003, 17 (3): 621-624.PubMed Cardinale M, Lim J: Electromyography activity of vastus lateralis muscle during whole-body vibrations of different frequencies. J Strength Cond Res. 2003, 17 (3): 621-624.PubMed
7.
go back to reference Shinohara M: Effects of prolonged vibration on motor unit activity and motor performance. Med Sci Sports Exerc. 2005, 37 (12): 2120-2125. 10.1249/01.mss.0000178106.68569.7e.CrossRefPubMed Shinohara M: Effects of prolonged vibration on motor unit activity and motor performance. Med Sci Sports Exerc. 2005, 37 (12): 2120-2125. 10.1249/01.mss.0000178106.68569.7e.CrossRefPubMed
8.
go back to reference Perrey S: Compression garments: Evidence for their physiological effects. In The Engineering of Sport 7, Vol 2. Volume 2. Edited by: Estivalet M, Brisson P. 2008, Paris: Springer-Verlag, 319-328. Perrey S: Compression garments: Evidence for their physiological effects. In The Engineering of Sport 7, Vol 2. Volume 2. Edited by: Estivalet M, Brisson P. 2008, Paris: Springer-Verlag, 319-328.
9.
go back to reference Doan BK, Kwon YH, Newton RU, Shim J, Popper EM, Rogers RA, Bolt LR, Robertson M, Kraemer WJ: Evaluation of a lower-body compression garment. J Sports Sci. 2003, 21 (8): 601-610. 10.1080/0264041031000101971.CrossRefPubMed Doan BK, Kwon YH, Newton RU, Shim J, Popper EM, Rogers RA, Bolt LR, Robertson M, Kraemer WJ: Evaluation of a lower-body compression garment. J Sports Sci. 2003, 21 (8): 601-610. 10.1080/0264041031000101971.CrossRefPubMed
10.
go back to reference Kraemer WJ, Bush JA, Newton RU, Duncan ND, Volek JS, Denegar CR, Canavan P, Johnston J, Putukian M, Sebastianelli WJ: Influence of a compression garment on repetitive power output production before and after different types of muscle fatigue. Sports Med Train Rehab. 1998, 8 (2): 163-184. 10.1080/15438629809512525.CrossRef Kraemer WJ, Bush JA, Newton RU, Duncan ND, Volek JS, Denegar CR, Canavan P, Johnston J, Putukian M, Sebastianelli WJ: Influence of a compression garment on repetitive power output production before and after different types of muscle fatigue. Sports Med Train Rehab. 1998, 8 (2): 163-184. 10.1080/15438629809512525.CrossRef
11.
go back to reference Aimonetti JM, Vedel JP, Schmied A, Pagni S: Task dependence of Ia presynaptic inhibition in human wrist extensor muscles: a single motor unit study. Clin Neurophysiol. 2000, 111 (7): 1165-1174. 10.1016/S1388-2457(00)00293-5.CrossRefPubMed Aimonetti JM, Vedel JP, Schmied A, Pagni S: Task dependence of Ia presynaptic inhibition in human wrist extensor muscles: a single motor unit study. Clin Neurophysiol. 2000, 111 (7): 1165-1174. 10.1016/S1388-2457(00)00293-5.CrossRefPubMed
12.
go back to reference Barrack RL, Skinner HB, Buckley SL: Proprioception in the anterior cruciate deficient knee. Am J Sports Med. 1989, 17 (1): 1-6. 10.1177/036354658901700101.CrossRefPubMed Barrack RL, Skinner HB, Buckley SL: Proprioception in the anterior cruciate deficient knee. Am J Sports Med. 1989, 17 (1): 1-6. 10.1177/036354658901700101.CrossRefPubMed
13.
go back to reference Kuster MS, Grob K, Kuster M, Wood GA, Gachter A: The benefits of wearing a compression sleeve after ACL reconstruction. Med Sci Sports Exerc. 1999, 31 (3): 368-371. 10.1097/00005768-199903000-00003.CrossRefPubMed Kuster MS, Grob K, Kuster M, Wood GA, Gachter A: The benefits of wearing a compression sleeve after ACL reconstruction. Med Sci Sports Exerc. 1999, 31 (3): 368-371. 10.1097/00005768-199903000-00003.CrossRefPubMed
14.
go back to reference Ali A, Creasy RH, Edge JA: The effect of graduated compression stockings on running performance. J Strength Cond Res. 2011, 25 (5): 1385-1392. 10.1519/JSC.0b013e3181d6848e.CrossRefPubMed Ali A, Creasy RH, Edge JA: The effect of graduated compression stockings on running performance. J Strength Cond Res. 2011, 25 (5): 1385-1392. 10.1519/JSC.0b013e3181d6848e.CrossRefPubMed
15.
go back to reference Schaff P, Hauser W: Ski boots versus the knee joint. 2: What produces the forward leaning position of the ski boot?. Sportverletz Sportschaden. 1990, 4 (1): 1-13. 10.1055/s-2007-993591.CrossRefPubMed Schaff P, Hauser W: Ski boots versus the knee joint. 2: What produces the forward leaning position of the ski boot?. Sportverletz Sportschaden. 1990, 4 (1): 1-13. 10.1055/s-2007-993591.CrossRefPubMed
16.
go back to reference Neumayr G, Hoertnagl H, Pfister R, Koller A, Eibl G, Raas E: Physical and physiological factors associated with success in professional alpine skiing. Int J Sports Med. 2003, 24 (8): 571-575.CrossRefPubMed Neumayr G, Hoertnagl H, Pfister R, Koller A, Eibl G, Raas E: Physical and physiological factors associated with success in professional alpine skiing. Int J Sports Med. 2003, 24 (8): 571-575.CrossRefPubMed
17.
go back to reference Noe F, Paillard T: Is postural control affected by expertise in alpine skiing?. Brit J Sports Med. 2005, 39 (11): 835-837. 10.1136/bjsm.2005.018127.CrossRef Noe F, Paillard T: Is postural control affected by expertise in alpine skiing?. Brit J Sports Med. 2005, 39 (11): 835-837. 10.1136/bjsm.2005.018127.CrossRef
18.
go back to reference Litter J: Thromboembolism; its prophylaxis and medical treatment; recent advances. Med Clin N Am. 1952, 36 (5): 1309-1321.PubMed Litter J: Thromboembolism; its prophylaxis and medical treatment; recent advances. Med Clin N Am. 1952, 36 (5): 1309-1321.PubMed
19.
go back to reference Ibegbuna V, Delis KT, Nicolaides AN, Aina O: Effect of elastic compression stockings on venous hemodynamics during walking. J Vasc Surg. 2003, 37 (2): 420-425. 10.1067/mva.2003.104.CrossRefPubMed Ibegbuna V, Delis KT, Nicolaides AN, Aina O: Effect of elastic compression stockings on venous hemodynamics during walking. J Vasc Surg. 2003, 37 (2): 420-425. 10.1067/mva.2003.104.CrossRefPubMed
20.
go back to reference Agu O, Baker D, Seifalian AM: Effect of graduated compression stockings on limb oxygenation and venous function during exercise in patients with venous insufficiency. Vascular. 2004, 12 (1): 69-76.CrossRefPubMed Agu O, Baker D, Seifalian AM: Effect of graduated compression stockings on limb oxygenation and venous function during exercise in patients with venous insufficiency. Vascular. 2004, 12 (1): 69-76.CrossRefPubMed
21.
go back to reference Bringard A, Perrey S, Belluye N: Aerobic energy cost and sensation responses during submaximal running exercise - positive effects of wearing compression tights. Int J Sports Med. 2006, 27 (5): 373-378. 10.1055/s-2005-865718.CrossRefPubMed Bringard A, Perrey S, Belluye N: Aerobic energy cost and sensation responses during submaximal running exercise - positive effects of wearing compression tights. Int J Sports Med. 2006, 27 (5): 373-378. 10.1055/s-2005-865718.CrossRefPubMed
22.
go back to reference Kraemer WJ, Volek JS, Bush JA, Gotshalk LA, Wagner PR, Gomez AL, Zatsiorsky VM, Duarte M, Ratamess NA, Mazzetti SA, et al: Influence of compression hosiery on physiological responses to standing fatigue in women. Med Sci Sports Exerc. 2000, 32 (11): 1849-1858. 10.1097/00005768-200011000-00006.CrossRefPubMed Kraemer WJ, Volek JS, Bush JA, Gotshalk LA, Wagner PR, Gomez AL, Zatsiorsky VM, Duarte M, Ratamess NA, Mazzetti SA, et al: Influence of compression hosiery on physiological responses to standing fatigue in women. Med Sci Sports Exerc. 2000, 32 (11): 1849-1858. 10.1097/00005768-200011000-00006.CrossRefPubMed
23.
go back to reference Born DP, Sperlich B, Holmberg HC: Bringing Light into the Dark: Effects of Compression Clothing on Performance and Recovery. Int J Sports Physiol Perform. 2012, in Press Born DP, Sperlich B, Holmberg HC: Bringing Light into the Dark: Effects of Compression Clothing on Performance and Recovery. Int J Sports Physiol Perform. 2012, in Press
24.
go back to reference Foss GC, Glenne B: Reducing On-Snow Vibration of Skis and Snowboards. Sound and Vibration. 2007, 12: 5. Foss GC, Glenne B: Reducing On-Snow Vibration of Skis and Snowboards. Sound and Vibration. 2007, 12: 5.
25.
go back to reference Partsch H, Clark M, Bassez S, Benigni JP, Becker F, Blazek V, Caprini J, Cornu-Thenard A, Hafner J, Flour M, et al: Measurement of lower leg compression in vivo: recommendations for the performance of measurements of interface pressure and stiffness: consensus statement. Dermatol Surg. 2006, 32 (2): 224-232. 10.1111/j.1524-4725.2006.32039.x. discussion 233PubMed Partsch H, Clark M, Bassez S, Benigni JP, Becker F, Blazek V, Caprini J, Cornu-Thenard A, Hafner J, Flour M, et al: Measurement of lower leg compression in vivo: recommendations for the performance of measurements of interface pressure and stiffness: consensus statement. Dermatol Surg. 2006, 32 (2): 224-232. 10.1111/j.1524-4725.2006.32039.x. discussion 233PubMed
26.
go back to reference Gaied I, Drapier S, Lun B: Experimental assessment and analytical 2D predictions of the stocking pressures induced on a model leg by Medical Compressive Stockings. J Biomech. 2006, 39 (16): 3017-3025. 10.1016/j.jbiomech.2005.10.022.CrossRefPubMed Gaied I, Drapier S, Lun B: Experimental assessment and analytical 2D predictions of the stocking pressures induced on a model leg by Medical Compressive Stockings. J Biomech. 2006, 39 (16): 3017-3025. 10.1016/j.jbiomech.2005.10.022.CrossRefPubMed
27.
go back to reference Sperlich B, Haegele M, Kruger M, Schiffer T, Holmberg HC, Mester J: Cardio-respiratory and metabolic responses to different levels of compression during submaximal exercise. Phlebology. 2011, 26 (3): 102-106. 10.1258/phleb.2010.010017.CrossRefPubMed Sperlich B, Haegele M, Kruger M, Schiffer T, Holmberg HC, Mester J: Cardio-respiratory and metabolic responses to different levels of compression during submaximal exercise. Phlebology. 2011, 26 (3): 102-106. 10.1258/phleb.2010.010017.CrossRefPubMed
28.
go back to reference Buchheit M, Ufland P: Effect of endurance training on performance and muscle reoxygenation rate during repeated-sprint running. Eur J Appl Physiol. 2011, 111 (2): 293-301. 10.1007/s00421-010-1654-9.CrossRefPubMed Buchheit M, Ufland P: Effect of endurance training on performance and muscle reoxygenation rate during repeated-sprint running. Eur J Appl Physiol. 2011, 111 (2): 293-301. 10.1007/s00421-010-1654-9.CrossRefPubMed
29.
go back to reference van Beekvelt MC, Borghuis MS, van Engelen BG, Wevers RA, Colier WN: Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clin Sci (Lond). 2001, 101 (1): 21-28. 10.1042/CS20000247.CrossRef van Beekvelt MC, Borghuis MS, van Engelen BG, Wevers RA, Colier WN: Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clin Sci (Lond). 2001, 101 (1): 21-28. 10.1042/CS20000247.CrossRef
30.
go back to reference Wolf M, Ferrari M, Quaresima V: Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J Biomed Opt. 2007, 12 (6): 062104-10.1117/1.2804899.CrossRefPubMed Wolf M, Ferrari M, Quaresima V: Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J Biomed Opt. 2007, 12 (6): 062104-10.1117/1.2804899.CrossRefPubMed
31.
go back to reference Kime R, Hamaoka T, Sako T, Murakami M, Homma T, Katsumura T, Chance B: Delayed reoxygenation after maximal isometric handgrip exercise in high oxidative capacity muscle. Eur J Appl Physiol. 2003, 89 (1): 34-41. 10.1007/s00421-002-0757-3.CrossRefPubMed Kime R, Hamaoka T, Sako T, Murakami M, Homma T, Katsumura T, Chance B: Delayed reoxygenation after maximal isometric handgrip exercise in high oxidative capacity muscle. Eur J Appl Physiol. 2003, 89 (1): 34-41. 10.1007/s00421-002-0757-3.CrossRefPubMed
32.
go back to reference Hermens HJE, Freriks BE: Future Applications of Surface Electromyography. 1999, Enschede: Roessingh Research and Development Hermens HJE, Freriks BE: Future Applications of Surface Electromyography. 1999, Enschede: Roessingh Research and Development
33.
go back to reference Rimaud D, Messonnier L, Castells J, Devillard X, Calmels P: Effects of compression stockings during exercise and recovery on blood lactate kinetics. Eur J Appl Physiol. 2010, 110 (2): 425-433. 10.1007/s00421-010-1503-x.CrossRefPubMed Rimaud D, Messonnier L, Castells J, Devillard X, Calmels P: Effects of compression stockings during exercise and recovery on blood lactate kinetics. Eur J Appl Physiol. 2010, 110 (2): 425-433. 10.1007/s00421-010-1503-x.CrossRefPubMed
34.
go back to reference Borg G: Perceived exertion as an indicator of somatic stress. Scand J Rehab Med. 1970, 2 (2): 92-98. Borg G: Perceived exertion as an indicator of somatic stress. Scand J Rehab Med. 1970, 2 (2): 92-98.
35.
go back to reference Cohen J: Statistical Power Analysis for the Behavioral Sciences. 1988, Hillsdale, NJ [u.a.]: Erlbaum, 2 Cohen J: Statistical Power Analysis for the Behavioral Sciences. 1988, Hillsdale, NJ [u.a.]: Erlbaum, 2
36.
go back to reference Barelle C, Tavernier M: Experimental creation of a model for the aerodynamic braking coefficient in Alpine skiing. Arch Physiol Biochem. 2000, 108 (1–2): 138-138. Barelle C, Tavernier M: Experimental creation of a model for the aerodynamic braking coefficient in Alpine skiing. Arch Physiol Biochem. 2000, 108 (1–2): 138-138.
37.
go back to reference Barelle C, Ruby A, Tavernier M: Experimental model of the aerodynamic drag coefficient in alpine skiing. J Appl Biomech. 2004, 20 (2): 167-176. Barelle C, Ruby A, Tavernier M: Experimental model of the aerodynamic drag coefficient in alpine skiing. J Appl Biomech. 2004, 20 (2): 167-176.
39.
go back to reference Burke D, Hagbarth KE, Lofstedt L, Wallin BG: The responses of human muscle spindle endings to vibration of non-contracting muscles. J Physiol. 1976, 261 (3): 673-693.CrossRefPubMedPubMedCentral Burke D, Hagbarth KE, Lofstedt L, Wallin BG: The responses of human muscle spindle endings to vibration of non-contracting muscles. J Physiol. 1976, 261 (3): 673-693.CrossRefPubMedPubMedCentral
40.
go back to reference Moberg E: The role of cutaneous afferents in position sense, kinaesthesia, and motor function of the hand. Brain. 1983, 106 (Pt 1): 1-19.CrossRefPubMed Moberg E: The role of cutaneous afferents in position sense, kinaesthesia, and motor function of the hand. Brain. 1983, 106 (Pt 1): 1-19.CrossRefPubMed
41.
go back to reference Simoneau GG, Degner RM, Kramper CA, Kittleson KH: Changes in ankle joint proprioception resulting from strips of athletic tape applied over the skin. J Athl Train. 1997, 32 (2): 141-147.PubMedPubMedCentral Simoneau GG, Degner RM, Kramper CA, Kittleson KH: Changes in ankle joint proprioception resulting from strips of athletic tape applied over the skin. J Athl Train. 1997, 32 (2): 141-147.PubMedPubMedCentral
42.
go back to reference Collins DF, Prochazka A: Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J Physiol. 1996, 496 (Pt 3): 857-871.CrossRefPubMedPubMedCentral Collins DF, Prochazka A: Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J Physiol. 1996, 496 (Pt 3): 857-871.CrossRefPubMedPubMedCentral
43.
go back to reference Rittweger J, Mutschelknauss M, Felsenberg D: Acute changes in neuromuscular excitability after exhaustive whole body vibration exercise as compared to exhaustion by squatting exercise. Clin Physiol Funct I. 2003, 23 (2): 81-86. 10.1046/j.1475-097X.2003.00473.x.CrossRef Rittweger J, Mutschelknauss M, Felsenberg D: Acute changes in neuromuscular excitability after exhaustive whole body vibration exercise as compared to exhaustion by squatting exercise. Clin Physiol Funct I. 2003, 23 (2): 81-86. 10.1046/j.1475-097X.2003.00473.x.CrossRef
44.
go back to reference Rittweger J, Schiesel H, Felsenberg D: Oxygen uptake during whole-body vibration exercise: comparison with squatting as a slow voluntary movement. Eur J Appl Physiol. 2001, 86 (2): 169-173. 10.1007/s004210100511.CrossRefPubMed Rittweger J, Schiesel H, Felsenberg D: Oxygen uptake during whole-body vibration exercise: comparison with squatting as a slow voluntary movement. Eur J Appl Physiol. 2001, 86 (2): 169-173. 10.1007/s004210100511.CrossRefPubMed
45.
go back to reference Yamada E, Kusaka T, Miyamoto K, Tanaka S, Morita S, Tsuji S, Mori S, Norimatsu H, Itoh S: Vastus lateralis oxygenation and blood volume measured by near-infrared spectroscopy during whole body vibration. Clin Physiol Funct Imaging. 2005, 25 (4): 203-208. 10.1111/j.1475-097X.2005.00614.x.CrossRefPubMed Yamada E, Kusaka T, Miyamoto K, Tanaka S, Morita S, Tsuji S, Mori S, Norimatsu H, Itoh S: Vastus lateralis oxygenation and blood volume measured by near-infrared spectroscopy during whole body vibration. Clin Physiol Funct Imaging. 2005, 25 (4): 203-208. 10.1111/j.1475-097X.2005.00614.x.CrossRefPubMed
46.
go back to reference Coza A, Nigg BM, Dunn JF: Effects of vibrations on gastrocnemius medialis tissue oxygenation. Med Sci Sports Exerc. 2011, 43 (3): 509-515. 10.1249/MSS.0b013e3181f2589f.CrossRefPubMed Coza A, Nigg BM, Dunn JF: Effects of vibrations on gastrocnemius medialis tissue oxygenation. Med Sci Sports Exerc. 2011, 43 (3): 509-515. 10.1249/MSS.0b013e3181f2589f.CrossRefPubMed
47.
go back to reference Cardinale M, Ferrari M, Quaresima V: Gastrocnemius medialis and vastus lateralis oxygenation during whole-body vibration exercise. Med Sci Sports Exerc. 2007, 39 (4): 694-700. 10.1249/mss.0b013e31803084d8.CrossRefPubMed Cardinale M, Ferrari M, Quaresima V: Gastrocnemius medialis and vastus lateralis oxygenation during whole-body vibration exercise. Med Sci Sports Exerc. 2007, 39 (4): 694-700. 10.1249/mss.0b013e31803084d8.CrossRefPubMed
48.
go back to reference Zange J, Haller T, Muller K, Liphardt AM, Mester J: Energy metabolism in human calf muscle performing isometric plantar flexion superimposed by 20-Hz vibration. Eur J Appl Physiol. 2009, 105 (2): 265-270. 10.1007/s00421-008-0898-0.CrossRefPubMed Zange J, Haller T, Muller K, Liphardt AM, Mester J: Energy metabolism in human calf muscle performing isometric plantar flexion superimposed by 20-Hz vibration. Eur J Appl Physiol. 2009, 105 (2): 265-270. 10.1007/s00421-008-0898-0.CrossRefPubMed
49.
go back to reference Chance B, Dait MT, Zhang CD, Hamaoka T, Hagerman F: Recovery from Exercise-Induced Desaturation in the Quadriceps Muscles of Elite Competitive Rowers. Am J Physiol. 1992, 262 (3): C766-C775.PubMed Chance B, Dait MT, Zhang CD, Hamaoka T, Hagerman F: Recovery from Exercise-Induced Desaturation in the Quadriceps Muscles of Elite Competitive Rowers. Am J Physiol. 1992, 262 (3): C766-C775.PubMed
50.
go back to reference Hamaoka T, Iwane H, Shimomitsu T, Katsumura T, Murase N, Nishio S, Osada T, Kurosawa Y, Chance B: Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy. J Appl Physiol. 1996, 81 (3): 1410-1417.PubMed Hamaoka T, Iwane H, Shimomitsu T, Katsumura T, Murase N, Nishio S, Osada T, Kurosawa Y, Chance B: Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy. J Appl Physiol. 1996, 81 (3): 1410-1417.PubMed
51.
go back to reference Sperlich B, Born DP, Kaskinoro K, Kalliokoski KK, Laaksonen MS: Squeezing the muscle: compression clothing and muscle metabolism during recovery from high intensity exercise. PloS One. 2013, 8 (4): e60923-10.1371/journal.pone.0060923.CrossRefPubMedPubMedCentral Sperlich B, Born DP, Kaskinoro K, Kalliokoski KK, Laaksonen MS: Squeezing the muscle: compression clothing and muscle metabolism during recovery from high intensity exercise. PloS One. 2013, 8 (4): e60923-10.1371/journal.pone.0060923.CrossRefPubMedPubMedCentral
52.
go back to reference Astrand P-O, Rodahl K: Textbook of Work Physiology : Physiological Bases of Exercise, 3rd ed. edn. 1986, New York: McGraw Hill Astrand P-O, Rodahl K: Textbook of Work Physiology : Physiological Bases of Exercise, 3rd ed. edn. 1986, New York: McGraw Hill
53.
go back to reference Faude O, Kindermann W, Meyer T: Lactate threshold concepts: how valid are they?. Sports Med. 2009, 39 (6): 469-490. 10.2165/00007256-200939060-00003.CrossRefPubMed Faude O, Kindermann W, Meyer T: Lactate threshold concepts: how valid are they?. Sports Med. 2009, 39 (6): 469-490. 10.2165/00007256-200939060-00003.CrossRefPubMed
54.
go back to reference Chatard JC, Atlaoui D, Farjanel J, Louisy F, Rastel D, Guezennec CY: Elastic stockings, performance and leg pain recovery in 63-year-old sportsmen. Eur J Appl Physiol. 2004, 93 (3): 347-352. 10.1007/s00421-004-1163-9.CrossRefPubMed Chatard JC, Atlaoui D, Farjanel J, Louisy F, Rastel D, Guezennec CY: Elastic stockings, performance and leg pain recovery in 63-year-old sportsmen. Eur J Appl Physiol. 2004, 93 (3): 347-352. 10.1007/s00421-004-1163-9.CrossRefPubMed
55.
go back to reference Berry MJ, McMurray RG: Effects of graduated compression stockings on blood lactate following an exhaustive bout of exercise. Am J Phys Med. 1987, 66 (3): 121-132.PubMed Berry MJ, McMurray RG: Effects of graduated compression stockings on blood lactate following an exhaustive bout of exercise. Am J Phys Med. 1987, 66 (3): 121-132.PubMed
Metadata
Title
Is leg compression beneficial for alpine skiers?
Authors
Billy Sperlich
Dennis-Peter Born
Mikael Swarén
Yvonne Kilian
Björn Geesmann
Matthias Kohl-Bareis
Hans-Christer Holmberg
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Sports Science, Medicine and Rehabilitation / Issue 1/2013
Electronic ISSN: 2052-1847
DOI
https://doi.org/10.1186/2052-1847-5-18

Other articles of this Issue 1/2013

BMC Sports Science, Medicine and Rehabilitation 1/2013 Go to the issue