Skip to main content
Top
Published in: Journal of Occupational Medicine and Toxicology 1/2016

Open Access 01-12-2016 | Short report

Involvement of lysosomal dysfunction in silver nanoparticle-induced cellular damage in A549 human lung alveolar epithelial cells

Authors: Takamitsu Miyayama, Masato Matsuoka

Published in: Journal of Occupational Medicine and Toxicology | Issue 1/2016

Login to get access

Abstract

Background

While silver nanoparticles (AgNPs) are widely used in consumer and medical products, the mechanism by which AgNPs cause pulmonary cytotoxicity is not clear. AgNP agglomerates are found in endo-lysosomal structures within the cytoplasm of treated cells. In this study, the functional role of lysosomes in AgNP-induced cellular damage was examined in A549 human lung alveolar epithelial cells. We evaluated the intracellular distribution of AgNPs, lysosomal pH, cellular viability, Ag dissolution, and metallothionein (MT) mRNA levels in AgNP-exposed A549 cells that were treated with bafilomycin A1, the lysosomal acidification inhibitor.

Findings

Exposure of A549 cells to citrate-coated AgNPs (20 nm diameter) for 24 h induced cellular damage and cell death at 100 and 200 μg Ag/ml, respectively. Confocal laser microscopic examination of LysoTracker-stained cells showed that AgNPs colocalized with lysosomes and their agglomeration increased in a dose-dependent manner (50–200 μg Ag/ml). In addition, the fluorescence signals of LysoTracker were reduced following exposure to AgNPs, suggesting the elevation of lysosomal pH. Treatment of A549 cells with 200 nM bafilomycin A1 and AgNPs (50 μg Ag/ml) further reduced the fluorescence signals of LysoTracker. AgNP-induced cell death was also increased by bafilomycin A1 treatment. Finally, treatment with bafilomycin A1 suppressed the dissolution of Ag and decreased the mRNA expression levels of MT-I and MT-II following exposure to AgNPs.

Conclusions

The perturbation of lysosomal pH by AgNP exposure may play a role in AgNP agglomeration and subsequent cellular damage in A549 cells.
Literature
1.
go back to reference Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci. 2014;103:1931–44.PubMedCrossRef Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci. 2014;103:1931–44.PubMedCrossRef
2.
go back to reference Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci. 2009;108:452–61.PubMedCrossRef Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci. 2009;108:452–61.PubMedCrossRef
3.
go back to reference Braakhuis HM, Gosens I, Krystek P, Boere JAF, Cassee FR, Fokkens PHB, et al. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol. 2014;11:49.PubMedPubMedCentralCrossRef Braakhuis HM, Gosens I, Krystek P, Boere JAF, Cassee FR, Fokkens PHB, et al. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol. 2014;11:49.PubMedPubMedCentralCrossRef
4.
go back to reference Kim S, Choi JE, Choi J, Chung K-H, Park K, Yi J, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol in Vitro. 2009;23:1076–84.PubMedCrossRef Kim S, Choi JE, Choi J, Chung K-H, Park K, Yi J, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol in Vitro. 2009;23:1076–84.PubMedCrossRef
5.
go back to reference Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater. 2011;7:347–54.PubMedCrossRef Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater. 2011;7:347–54.PubMedCrossRef
6.
go back to reference Guarnieri D, Sabella S, Muscetti O, Belli V, Malvindi MA, Fusco S, et al. Transport across the cell-membrane dictates nanoparticle fate and toxicity: a new paradigm in nanotoxicology. Nanoscale. 2014;6:10264–73.PubMedCrossRef Guarnieri D, Sabella S, Muscetti O, Belli V, Malvindi MA, Fusco S, et al. Transport across the cell-membrane dictates nanoparticle fate and toxicity: a new paradigm in nanotoxicology. Nanoscale. 2014;6:10264–73.PubMedCrossRef
7.
go back to reference Guo D, Zhang J, Huang Z, Jiang S, Gu N. Colloidal silver nanoparticles improve anti-leukemic drug efficacy via amplification of oxidative stress. Colloids Surf B Biointerfaces. 2015;126:198–203.PubMedCrossRef Guo D, Zhang J, Huang Z, Jiang S, Gu N. Colloidal silver nanoparticles improve anti-leukemic drug efficacy via amplification of oxidative stress. Colloids Surf B Biointerfaces. 2015;126:198–203.PubMedCrossRef
8.
go back to reference Xu L, Shi C, Shao A, Li X, Cheng X, Ding R, et al. Toxic responses in rat embryonic cells to silver nanoparticles and released silver ions as analyzed via gene expression profiles and transmission electron microscopy. Nanotoxicology. 2015;9:513–22.PubMedCrossRef Xu L, Shi C, Shao A, Li X, Cheng X, Ding R, et al. Toxic responses in rat embryonic cells to silver nanoparticles and released silver ions as analyzed via gene expression profiles and transmission electron microscopy. Nanotoxicology. 2015;9:513–22.PubMedCrossRef
9.
go back to reference Luzio JP, Hackmann Y, Dieckmann NMG, Griffiths GM. The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb Perspect Biol. 2014;6:a016840.PubMedCrossRef Luzio JP, Hackmann Y, Dieckmann NMG, Griffiths GM. The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb Perspect Biol. 2014;6:a016840.PubMedCrossRef
10.
go back to reference Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nat Rev Mol Cell Biol. 2007;8:622–32.PubMedCrossRef Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nat Rev Mol Cell Biol. 2007;8:622–32.PubMedCrossRef
11.
go back to reference Bowman EJ, Siebers A, Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA. 1988;85:7972–6.PubMedPubMedCentralCrossRef Bowman EJ, Siebers A, Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA. 1988;85:7972–6.PubMedPubMedCentralCrossRef
12.
go back to reference Nakashima S, Hiraku Y, Tada-Oikawa S, Hishita T, Gabazza EC, Tamaki S, et al. Vacuolar H+-ATPase inhibitor induces apoptosis via lysosomal dysfunction in the human gastric cancer cell line MKN-1. J Biochem. 2003;134:359–64.PubMedCrossRef Nakashima S, Hiraku Y, Tada-Oikawa S, Hishita T, Gabazza EC, Tamaki S, et al. Vacuolar H+-ATPase inhibitor induces apoptosis via lysosomal dysfunction in the human gastric cancer cell line MKN-1. J Biochem. 2003;134:359–64.PubMedCrossRef
13.
go back to reference Arai Y, Miyayama T, Hirano S. Difference in the toxicity mechanism between ion and nanoparticle forms of silver in the mouse lung and in macrophages. Toxicology. 2015;328:84–92.PubMedCrossRef Arai Y, Miyayama T, Hirano S. Difference in the toxicity mechanism between ion and nanoparticle forms of silver in the mouse lung and in macrophages. Toxicology. 2015;328:84–92.PubMedCrossRef
14.
go back to reference Miyayama T, Matsuoka M. Increased expression and activation of serum- and glucocorticoid-inducible kinase-1 (SGK1) by cadmium in HK-2 renal proximal tubular epithelial cells. Environ Toxicol Pharmacol. 2014;38:374–8.PubMedCrossRef Miyayama T, Matsuoka M. Increased expression and activation of serum- and glucocorticoid-inducible kinase-1 (SGK1) by cadmium in HK-2 renal proximal tubular epithelial cells. Environ Toxicol Pharmacol. 2014;38:374–8.PubMedCrossRef
15.
16.
go back to reference De Matteis V, Malvindi MA, Galeone A, Brunetti V, De Luca E, Kote S, et al. Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol. Nanomedicine. 2015;11:731–9.PubMedCrossRef De Matteis V, Malvindi MA, Galeone A, Brunetti V, De Luca E, Kote S, et al. Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol. Nanomedicine. 2015;11:731–9.PubMedCrossRef
17.
go back to reference Lansdown ABG. Metallothioneins: potential therapeutic aids for wound healing in the skin. Wound Repair Regen. 2002;10:130–2.PubMedCrossRef Lansdown ABG. Metallothioneins: potential therapeutic aids for wound healing in the skin. Wound Repair Regen. 2002;10:130–2.PubMedCrossRef
18.
go back to reference Wilkinson LJ, White RJ, Chipman JK. Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care. 2011;20:543–9.PubMedCrossRef Wilkinson LJ, White RJ, Chipman JK. Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care. 2011;20:543–9.PubMedCrossRef
19.
go back to reference Setyawati MI, Yuan X, Xie J, Leong DT. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials. 2014;35:6707–15.PubMedCrossRef Setyawati MI, Yuan X, Xie J, Leong DT. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials. 2014;35:6707–15.PubMedCrossRef
20.
go back to reference Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 2012;9:20.PubMedPubMedCentralCrossRef Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 2012;9:20.PubMedPubMedCentralCrossRef
21.
22.
go back to reference Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, et al. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano. 2011;5:8629–39.PubMedCrossRef Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, et al. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano. 2011;5:8629–39.PubMedCrossRef
23.
go back to reference Ringwood AH, McCarthy M, Bates TC, Carroll DL. The effects of silver nanoparticles on oyster embryos. Mar Environ Res. 2010;69 Suppl 1:49–51.CrossRef Ringwood AH, McCarthy M, Bates TC, Carroll DL. The effects of silver nanoparticles on oyster embryos. Mar Environ Res. 2010;69 Suppl 1:49–51.CrossRef
24.
go back to reference Yang E-J, Kim S, Kim JS, Choi I-H. Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials. 2012;33:6858–67.PubMedCrossRef Yang E-J, Kim S, Kim JS, Choi I-H. Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials. 2012;33:6858–67.PubMedCrossRef
25.
go back to reference Kroemer G, Jäättelä M. Lysosomes and autophagy in cell death control. Nat Rev Cancer. 2005;5:886–97.PubMedCrossRef Kroemer G, Jäättelä M. Lysosomes and autophagy in cell death control. Nat Rev Cancer. 2005;5:886–97.PubMedCrossRef
Metadata
Title
Involvement of lysosomal dysfunction in silver nanoparticle-induced cellular damage in A549 human lung alveolar epithelial cells
Authors
Takamitsu Miyayama
Masato Matsuoka
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Occupational Medicine and Toxicology / Issue 1/2016
Electronic ISSN: 1745-6673
DOI
https://doi.org/10.1186/s12995-016-0090-0

Other articles of this Issue 1/2016

Journal of Occupational Medicine and Toxicology 1/2016 Go to the issue