Skip to main content
Top
Published in: BMC Ophthalmology 1/2018

Open Access 01-12-2018 | Research article

Involvement of HDAC6 in ischaemia and reperfusion-induced rat retinal injury

Authors: Haihong Yuan, Hui Li, Ping Yu, Qichen Fan, Xuan Zhang, Wei Huang, Junyi Shen, Yongyao Cui, Wei Zhou

Published in: BMC Ophthalmology | Issue 1/2018

Login to get access

Abstract

Background

The role of histone deacetylases 6 (HDAC6) has been elucidated in various neurodegenerative diseases. However, the effect of HDAC6 on retinal degenerative processes remains unknown. The aim of this study was to elucidate the potential role of HDAC6 in the retinal ischaemia and reperfusion (I/R) injury model.

Methods

The retinal pathological lesion was evaluated by haematoxylin and eosin (H&E) staining. HDAC expression or activity was detected by immunohistochemistry, Western blotting assays or colorimetric assays. The expression of apoptotic- and autophagic- related proteins were quantified by Western blotting and RT-PCR. The expression of peroxiredoxin 2 (Prx2) was determined by RT-PCR and ELISA. The levels of acetylated α-tubulin and acetylated histone 3 in the retina were assayed by Western blotting.

Results

We found that I/R-induced reduction of the retinal thickness was ameliorated, and the survival of RGCs was increased by the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) as well as by tubacin (an HDAC6 selective inhibitor). The decreased expression of THY (thymus cell antigen) in the I/R-induced retinas was also reversed by TSA and tubacin. Elevated HDAC6 expression and activity in the retina from I/R injury were significantly inhibited by tubacin, which also attenuated I/R-mediated apoptosis by decreasing TUNEL-positive RGCs and Bax expression and increasing Bcl-2 expression. Additionally, tubacin increased the expression of autophagy-related gene Beclin 1 and microtubule-associated protein 1 light chain 3B (LC3B) and the levels of Prx2. Furthermore, the protective effect of tubacin was associated with acetylated α-tubulin and was independent of acetylated histone 3.

Conclusions

Our findings suggest that tubacin exhibits neuroprotective effects after I/R retinal injury, and HDAC6 may be a potential therapeutic target for the retinal neurodegenerative disease of glaucoma.
Literature
1.
go back to reference Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012;119(5):979–86.CrossRef Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012;119(5):979–86.CrossRef
2.
go back to reference Mozaffarieh M, Flammer J. New insights in the pathogeesis and treatment of normal tension glaucoma. Curr Opin Pharmacol. 2013;13(1):43–9.CrossRef Mozaffarieh M, Flammer J. New insights in the pathogeesis and treatment of normal tension glaucoma. Curr Opin Pharmacol. 2013;13(1):43–9.CrossRef
3.
go back to reference Russo R, Berliocchi L, Adornetto A, et al. Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis. 2011;2:e144.CrossRef Russo R, Berliocchi L, Adornetto A, et al. Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis. 2011;2:e144.CrossRef
4.
go back to reference Osborne NN, Schmidt KG. Neuroprotection against glaucoma remains a concept. Ophthalmologe. 2004;101(11):1087–92.CrossRef Osborne NN, Schmidt KG. Neuroprotection against glaucoma remains a concept. Ophthalmologe. 2004;101(11):1087–92.CrossRef
5.
go back to reference Tan PP, Yuan HH, Zhu X, Cui YY, Li H, Feng XM, Qiu Y, Chen HZ, Zhou W. Activation of muscarinic receptors protects against retinal neurons damage and optic nerve degeneration in vitro and in vivo models. CNS Neurosci Ther. 2014;20(3):227–36.CrossRef Tan PP, Yuan HH, Zhu X, Cui YY, Li H, Feng XM, Qiu Y, Chen HZ, Zhou W. Activation of muscarinic receptors protects against retinal neurons damage and optic nerve degeneration in vitro and in vivo models. CNS Neurosci Ther. 2014;20(3):227–36.CrossRef
6.
go back to reference Zhang Z, Qin X, Tong N, Zhao X, Gong Y, Shi Y, Wu X. Valproic acid-mediated neuroprotection in retinal ischemia injury via histone deacetylase inhibition and transcriptional activation. Exp Eye Res. 2012;94(1):98–108.CrossRef Zhang Z, Qin X, Tong N, Zhao X, Gong Y, Shi Y, Wu X. Valproic acid-mediated neuroprotection in retinal ischemia injury via histone deacetylase inhibition and transcriptional activation. Exp Eye Res. 2012;94(1):98–108.CrossRef
7.
go back to reference Wei T, Kang Q, Ma B, Gao S, Li X, Liu Y. Activation of autophagy and paraptosis in retinal ganglion cells after retinal ischemia and reperfusion injury in rats. Exp Ther Med. 2015;9(2):476–82.CrossRef Wei T, Kang Q, Ma B, Gao S, Li X, Liu Y. Activation of autophagy and paraptosis in retinal ganglion cells after retinal ischemia and reperfusion injury in rats. Exp Ther Med. 2015;9(2):476–82.CrossRef
8.
go back to reference Shi Y, Wu X, Gong Y, Qiu Y, Zhang H, Huang Z, Su K. Protective effects of caffeic acid phenethyl ester on retinal ischemia/reperfusion injury in rats. Curr Eye Res. 2010;35(10):930–7.CrossRef Shi Y, Wu X, Gong Y, Qiu Y, Zhang H, Huang Z, Su K. Protective effects of caffeic acid phenethyl ester on retinal ischemia/reperfusion injury in rats. Curr Eye Res. 2010;35(10):930–7.CrossRef
9.
go back to reference Xie J, Jiang L, Zhang T, Jin Y, Yang D, Chen F. Neuroprotective effects of Epigallocate- chin-3-gallate (EGCG) in optic nerve crush model in rats. Neurosci Lett. 2010;479(1):26–30.CrossRef Xie J, Jiang L, Zhang T, Jin Y, Yang D, Chen F. Neuroprotective effects of Epigallocate- chin-3-gallate (EGCG) in optic nerve crush model in rats. Neurosci Lett. 2010;479(1):26–30.CrossRef
10.
go back to reference Pelzel HR, Schlamp CL, Nickells RW. Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis. BMC Neurosci. 2010;11:62.CrossRef Pelzel HR, Schlamp CL, Nickells RW. Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis. BMC Neurosci. 2010;11:62.CrossRef
11.
go back to reference Wallace DM, Cotter TG. Histone deacetylase activity in conjunction with E2F-1 and p53 regulates Apaf-1 expression in 661W cells and the retina. J Neurosci Res. 2009;87(4):887–905.CrossRef Wallace DM, Cotter TG. Histone deacetylase activity in conjunction with E2F-1 and p53 regulates Apaf-1 expression in 661W cells and the retina. J Neurosci Res. 2009;87(4):887–905.CrossRef
12.
go back to reference Zhong Q, Kowluru RA. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon. J Cell Biochem. 2010;110(6):1306–13.CrossRef Zhong Q, Kowluru RA. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon. J Cell Biochem. 2010;110(6):1306–13.CrossRef
13.
go back to reference Didonna A, Opal P. The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Transl Neurol. 2015;2(1):79–101.CrossRef Didonna A, Opal P. The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Transl Neurol. 2015;2(1):79–101.CrossRef
14.
go back to reference Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10(1):32–42.CrossRef Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10(1):32–42.CrossRef
15.
go back to reference Simões-Pires C, Zwick V, Nurisso A, Schenker E, Carrupt PA, Cuendet M. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs ? Mol Neurodegener. 2013;8:7.CrossRef Simões-Pires C, Zwick V, Nurisso A, Schenker E, Carrupt PA, Cuendet M. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs ? Mol Neurodegener. 2013;8:7.CrossRef
16.
go back to reference d'Ydewalle C, Bogaert E, Van Den Bosch L. HDAC6 at the intersection of neuroprotection and neurodegeneration. Traffic. 2012;13(6):771–9.CrossRef d'Ydewalle C, Bogaert E, Van Den Bosch L. HDAC6 at the intersection of neuroprotection and neurodegeneration. Traffic. 2012;13(6):771–9.CrossRef
17.
go back to reference Seidel C, Schnekenburger M, Dicato M, Diederich M. Histone deacetylase 6 in health and disease. Epigenomics. 2015;7(1):103–18.CrossRef Seidel C, Schnekenburger M, Dicato M, Diederich M. Histone deacetylase 6 in health and disease. Epigenomics. 2015;7(1):103–18.CrossRef
18.
go back to reference Rivieccio MA, Brochier C, Willis DE, et al. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Proc Natl Acad Sci USA. 2009;106(46):19599–604.CrossRef Rivieccio MA, Brochier C, Willis DE, et al. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Proc Natl Acad Sci USA. 2009;106(46):19599–604.CrossRef
19.
go back to reference Crosson CE, Mani SK, Husain S, et al. Inhibition of histone deacetylase protects the retina from ischemic injury. Invest Ophthalmol Vis Sci. 2010;51(7):3639–45.CrossRef Crosson CE, Mani SK, Husain S, et al. Inhibition of histone deacetylase protects the retina from ischemic injury. Invest Ophthalmol Vis Sci. 2010;51(7):3639–45.CrossRef
20.
go back to reference Fan J, Alsarraf O, Dahrouj M, et al. Inhibition of HDAC2 protects the retina from ischemic injury. Invest Ophthalmol Vis Sci. 2013;54(6):4072–80.CrossRef Fan J, Alsarraf O, Dahrouj M, et al. Inhibition of HDAC2 protects the retina from ischemic injury. Invest Ophthalmol Vis Sci. 2013;54(6):4072–80.CrossRef
21.
go back to reference Biermann J, Grieshaber P, Goebel U, Martin G, Thanos S, Di Giovanni S, Lagrèze WA. Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Invest Ophthalmol Vis Sci. 2010;51(1):526–34.CrossRef Biermann J, Grieshaber P, Goebel U, Martin G, Thanos S, Di Giovanni S, Lagrèze WA. Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Invest Ophthalmol Vis Sci. 2010;51(1):526–34.CrossRef
22.
go back to reference Biermann J, Boyle J, Pielen A, Lagrèze WA. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cell. Mol Vis. 2011;17:395–403.PubMedPubMedCentral Biermann J, Boyle J, Pielen A, Lagrèze WA. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cell. Mol Vis. 2011;17:395–403.PubMedPubMedCentral
23.
go back to reference Zhang ZZ, Gong YY, Shi YH, Zhang W, Qin XH, Wu XW. Valproate promotes survival of retinal ganglion cells in a rat model of optic nerve crush. Neuroscience. 2012;224:282–93.CrossRef Zhang ZZ, Gong YY, Shi YH, Zhang W, Qin XH, Wu XW. Valproate promotes survival of retinal ganglion cells in a rat model of optic nerve crush. Neuroscience. 2012;224:282–93.CrossRef
24.
go back to reference Valenzuela-Fernández A, Cabrero JR, Serrador JM, Sánchez-Madrid F. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 2008;18(6):291–7.CrossRef Valenzuela-Fernández A, Cabrero JR, Serrador JM, Sánchez-Madrid F. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 2008;18(6):291–7.CrossRef
25.
go back to reference Sancho-Pelluz J, Paquet-Durand F. HDAC inhibition prevents Rd1 mouse photoreceptor de- generation. Adv Exp Med Biol. 2012;723:107–13.CrossRef Sancho-Pelluz J, Paquet-Durand F. HDAC inhibition prevents Rd1 mouse photoreceptor de- generation. Adv Exp Med Biol. 2012;723:107–13.CrossRef
26.
go back to reference Semba K, Namekata K, Kimura A, Harada C, Mitamura Y, Harada T. Brimonidine pre- vents neurodegeneration in a mouse model of normal tension glaucoma. Cell Death Dis. 2014;5:e1341.CrossRef Semba K, Namekata K, Kimura A, Harada C, Mitamura Y, Harada T. Brimonidine pre- vents neurodegeneration in a mouse model of normal tension glaucoma. Cell Death Dis. 2014;5:e1341.CrossRef
28.
go back to reference Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12.CrossRef Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12.CrossRef
29.
go back to reference Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717–21.CrossRef Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717–21.CrossRef
30.
go back to reference Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007;447(7146):859–63.CrossRef Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007;447(7146):859–63.CrossRef
31.
go back to reference Geeraert C, Ratier A, Pfisterer SG, et al. Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation. J Biol Chem. 2010;285(31):24184–94.CrossRef Geeraert C, Ratier A, Pfisterer SG, et al. Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation. J Biol Chem. 2010;285(31):24184–94.CrossRef
32.
go back to reference Zhao G, Zhang W, Li L, Wu S, Du G. Pinocembrin protects the brain against ischemia- reperfusion injury and reverses the autophagy dysfunction in the penumbra area. Molecules. 2014;19(10):15786–98.CrossRef Zhao G, Zhang W, Li L, Wu S, Du G. Pinocembrin protects the brain against ischemia- reperfusion injury and reverses the autophagy dysfunction in the penumbra area. Molecules. 2014;19(10):15786–98.CrossRef
33.
go back to reference Lee JY, Koga H, Kawaguchi Y, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 2010;29(5):969–80.CrossRef Lee JY, Koga H, Kawaguchi Y, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 2010;29(5):969–80.CrossRef
34.
go back to reference McLendon PM, Ferguson BS, Osinska H, et al. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proc Natl Acad Sci U S A. 2014;111(48):E5178–86.CrossRef McLendon PM, Ferguson BS, Osinska H, et al. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proc Natl Acad Sci U S A. 2014;111(48):E5178–86.CrossRef
35.
go back to reference Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci. 2007;27(13):3571–83.CrossRef Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci. 2007;27(13):3571–83.CrossRef
36.
go back to reference Parmigiani RB, Xu WS, Venta-Perez G, et al. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regelation. Proc Natl Acad Sci U S A. 2008;105(28):9633–8.CrossRef Parmigiani RB, Xu WS, Venta-Perez G, et al. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regelation. Proc Natl Acad Sci U S A. 2008;105(28):9633–8.CrossRef
37.
go back to reference Thomas S, Quinn BA, Das SK, et al. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets. 2013;17:61–75.CrossRef Thomas S, Quinn BA, Das SK, et al. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets. 2013;17:61–75.CrossRef
38.
go back to reference Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994;124:1–6.CrossRef Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994;124:1–6.CrossRef
39.
go back to reference Kelly PN, Strasser A. The role of Bcl-2 and its prosurvival relatives in tumourigenesis and cancer therapy. Cell Death Differ. 2011;18:1414–24.CrossRef Kelly PN, Strasser A. The role of Bcl-2 and its prosurvival relatives in tumourigenesis and cancer therapy. Cell Death Differ. 2011;18:1414–24.CrossRef
40.
go back to reference Liu Z, Ding Y, Ye N, et al. Direct activation of bax protein for cancer therapy. Med Res Rev. 2016;36:313–41.CrossRef Liu Z, Ding Y, Ye N, et al. Direct activation of bax protein for cancer therapy. Med Res Rev. 2016;36:313–41.CrossRef
41.
go back to reference Gross A, Jockel J, Wei MC, et al. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 1998;17:3878–85.CrossRef Gross A, Jockel J, Wei MC, et al. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 1998;17:3878–85.CrossRef
42.
go back to reference Boulos S, Meloni BP, Arthur PG, et al. Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidativeinjury but not glutamate excitotoxicity, whereas cu/Zn superoxide dismutase1 overexpression protects only against oxidative injury. J Neurosci Res. 2007;85(14):3089–97.CrossRef Boulos S, Meloni BP, Arthur PG, et al. Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidativeinjury but not glutamate excitotoxicity, whereas cu/Zn superoxide dismutase1 overexpression protects only against oxidative injury. J Neurosci Res. 2007;85(14):3089–97.CrossRef
43.
go back to reference Gan Y, Ji X, Hu X, et al. Transgenic overexpression of peroxiredoxin-2 attenuates ischemicneuronal injury via suppression of a redox-sensitive pro-death signaling pathway. Antioxid Redox Signal. 2012;17(5):719–32.CrossRef Gan Y, Ji X, Hu X, et al. Transgenic overexpression of peroxiredoxin-2 attenuates ischemicneuronal injury via suppression of a redox-sensitive pro-death signaling pathway. Antioxid Redox Signal. 2012;17(5):719–32.CrossRef
44.
go back to reference Sung JH, Gim SA, Koh PO. Ferulic acid attenuates the cerebral ischemic injury-induced decrease in peroxiredoxin-2 and thioredoxin expression. Neurosci Lett. 2014;566:88–92.CrossRef Sung JH, Gim SA, Koh PO. Ferulic acid attenuates the cerebral ischemic injury-induced decrease in peroxiredoxin-2 and thioredoxin expression. Neurosci Lett. 2014;566:88–92.CrossRef
45.
go back to reference Hu X, Weng Z, Chu CT, et al. Peroxiredoxin-2 protects against 6-hydroxydopamine induced dopaminergic neurodegeneration via attenuation of the apoptosis signal regulating kinase (ASK1) signaling cascade. J Neurosci. 2011;31(1):247–61.CrossRef Hu X, Weng Z, Chu CT, et al. Peroxiredoxin-2 protects against 6-hydroxydopamine induced dopaminergic neurodegeneration via attenuation of the apoptosis signal regulating kinase (ASK1) signaling cascade. J Neurosci. 2011;31(1):247–61.CrossRef
46.
go back to reference Parmigiani RB, Xu WS, Venta-Perez G, et al. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc Natl Acad Sci U S A. 2008;105(28):9633–8.CrossRef Parmigiani RB, Xu WS, Venta-Perez G, et al. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc Natl Acad Sci U S A. 2008;105(28):9633–8.CrossRef
47.
go back to reference Fang J, Nakamura T, Cho DH, Gu Z, Lipton SA. S-nitrosylation of peroxiredoxin 2 promotes oxidative stress induced neuronal cell death in Parkinson’s disease. Proc Natl Acad Sci U S A. 2007;104(47):18742–7.CrossRef Fang J, Nakamura T, Cho DH, Gu Z, Lipton SA. S-nitrosylation of peroxiredoxin 2 promotes oxidative stress induced neuronal cell death in Parkinson’s disease. Proc Natl Acad Sci U S A. 2007;104(47):18742–7.CrossRef
48.
go back to reference Rezaie T, McKercher SR, Kosaka K, et al. Protective effect of carnosic acid, a pro-electrophilic compound, in models of oxidative stress and light-inducedretinal degeneration. Invest Ophthalmol Vis Sci. 2012;53(12):7847–54.CrossRef Rezaie T, McKercher SR, Kosaka K, et al. Protective effect of carnosic acid, a pro-electrophilic compound, in models of oxidative stress and light-inducedretinal degeneration. Invest Ophthalmol Vis Sci. 2012;53(12):7847–54.CrossRef
Metadata
Title
Involvement of HDAC6 in ischaemia and reperfusion-induced rat retinal injury
Authors
Haihong Yuan
Hui Li
Ping Yu
Qichen Fan
Xuan Zhang
Wei Huang
Junyi Shen
Yongyao Cui
Wei Zhou
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2018
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-018-0951-7

Other articles of this Issue 1/2018

BMC Ophthalmology 1/2018 Go to the issue