Skip to main content
Top
Published in: Tumor Biology 6/2015

01-06-2015 | Research Article

Involvement of acid-sensing ion channel 1α in hepatic carcinoma cell migration and invasion

Authors: Cheng Jin, Qing-Hai Ye, Feng-Lai Yuan, Yuan-Long Gu, Jian-Ping Li, Ying-Hong Shi, Xiao-Min Shen, Bo-Liu, Zhen-Hai Lin

Published in: Tumor Biology | Issue 6/2015

Login to get access

Abstract

An acidic microenvironment promotes carcinoma cell proliferation and migration. Acid-sensing ion channels (ASICs) are H+, Ca2+, and Na+-gated cation channels that are activated by changes in the extracellular pH, and ASIC1α may be associated with tumor proliferation and migration. Here, we investigated the role of ASIC1α in hepatocellular carcinoma (HCC) migration and invasion. The expression of ASIC1α was examined in 15 paired HCC and adjacent non-tumor tissues by immunohistochemistry. Reverse transcription (RT)-PCR and Western blotting were used to assess ASIC1α messenger RNA (mRNA) and protein expression in the HCC cell line SMMC-7721 cultured in different pH media or transfected with short hairpin RNA (shRNA) against ASIC1α. Cell migration ability was detected by wound healing and Transwell assays. ASIC1α expression was significantly higher in tumor tissues than in non-tumor tissues, and it was higher in HCC with postoperative metastasis than in that without metastasis. ASIC1α mRNA and protein expression was significantly higher in SMMC-7721 cells cultured at pH 6.5 than in those cultured at pH 7.4 and 6.0. shRNA-mediated silencing of ASIC1α significantly downregulated ASIC1α mRNA and protein expression compared with negative control or untransfected cells and inhibited HCC cell migration and invasion. ASIC1α is overexpressed in HCC tissues and associated with advanced clinical stage. A moderately acidic extracellular environment promoted ASIC1α expression, and silencing of ASIC1α expression inhibited the migration and invasion of HCC cells. Suppression of ASIC1α expression by RNAi attenuated the malignant phenotype of HCC cells, suggesting a novel approach for anticancer gene therapy.
Literature
1.
2.
go back to reference Hrgovic I, Glavic Z, Kovacic Z, Mulic S, Zunic L, Hrgovic Z. Repeated administration of inhibitors for ion pumps reduce markedly tumor growth in vivo. Med Arch. 2014;68:76–8.CrossRefPubMedPubMedCentral Hrgovic I, Glavic Z, Kovacic Z, Mulic S, Zunic L, Hrgovic Z. Repeated administration of inhibitors for ion pumps reduce markedly tumor growth in vivo. Med Arch. 2014;68:76–8.CrossRefPubMedPubMedCentral
3.
go back to reference Xiong ZG, Chu XP, Simon RP. Acid sensing ion channels—novel therapeutic targets for ischemic brain injury. Front Biosci. 2007;12:1376–86.CrossRefPubMed Xiong ZG, Chu XP, Simon RP. Acid sensing ion channels—novel therapeutic targets for ischemic brain injury. Front Biosci. 2007;12:1376–86.CrossRefPubMed
4.
go back to reference Chu XP, Grasing KA, Wang JQ. Acid-sensing ion channels contribute to neurotoxicity. Transl Stroke Res. 2014;5:69–78.CrossRefPubMed Chu XP, Grasing KA, Wang JQ. Acid-sensing ion channels contribute to neurotoxicity. Transl Stroke Res. 2014;5:69–78.CrossRefPubMed
5.
go back to reference Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev. 2002;82:735–67.CrossRefPubMed Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev. 2002;82:735–67.CrossRefPubMed
6.
go back to reference Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron. 2002;34:463–77.CrossRefPubMed Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron. 2002;34:463–77.CrossRefPubMed
7.
8.
go back to reference Sun X, Cao YB, Hu LF, Yang YP, Li J, Wang F, et al. ASICs mediate the modulatory effect by paeoniflorin on alpha-synuclein autophagic degradation. Brain Res. 2011;1396:77–87.CrossRefPubMed Sun X, Cao YB, Hu LF, Yang YP, Li J, Wang F, et al. ASICs mediate the modulatory effect by paeoniflorin on alpha-synuclein autophagic degradation. Brain Res. 2011;1396:77–87.CrossRefPubMed
9.
go back to reference Weng XC, Zheng JQ, Li J, Xiao WB. Underlying mechanism of ASIC1a involved in acidosis-induced cytotoxicity in rat C6 glioma cells. Acta Pharmacol Sin. 2007;28:1731–6.CrossRefPubMed Weng XC, Zheng JQ, Li J, Xiao WB. Underlying mechanism of ASIC1a involved in acidosis-induced cytotoxicity in rat C6 glioma cells. Acta Pharmacol Sin. 2007;28:1731–6.CrossRefPubMed
10.
go back to reference Jean C, Gravelle P, Fournie JJ, Laurent G. Influence of stress on extracellular matrix and integrin biology. Oncogene. 2011;30:2697–706.CrossRefPubMed Jean C, Gravelle P, Fournie JJ, Laurent G. Influence of stress on extracellular matrix and integrin biology. Oncogene. 2011;30:2697–706.CrossRefPubMed
11.
go back to reference Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–98.CrossRefPubMed Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–98.CrossRefPubMed
12.
go back to reference Xiong ZG, Chu XP, Simon RP. Ca2+-permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol. 2006;209:59–68.CrossRefPubMed Xiong ZG, Chu XP, Simon RP. Ca2+-permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol. 2006;209:59–68.CrossRefPubMed
13.
go back to reference Li M, Inoue K, Branigan D, Kratzer E, Hansen JC, Chen JW, et al. Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J Cereb Blood Flow Metab. 2010;30:1247–60.CrossRefPubMedPubMedCentral Li M, Inoue K, Branigan D, Kratzer E, Hansen JC, Chen JW, et al. Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J Cereb Blood Flow Metab. 2010;30:1247–60.CrossRefPubMedPubMedCentral
14.
go back to reference Hey JG, Chu XP, Seeds J, Simon RP, Xiong ZG. Extracellular zinc protects against acidosis-induced injury of cells expressing Ca2+-permeable acid-sensing ion channels. Stroke. 2007;38:670–3.CrossRefPubMed Hey JG, Chu XP, Seeds J, Simon RP, Xiong ZG. Extracellular zinc protects against acidosis-induced injury of cells expressing Ca2+-permeable acid-sensing ion channels. Stroke. 2007;38:670–3.CrossRefPubMed
15.
go back to reference Lee S, Mele M, Vahl P, Christiansen PM, Jensen VE, Boedtkjer E: Na,HCO -cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted ph gradient across the plasma membrane. Pflugers Arch. 2014 Lee S, Mele M, Vahl P, Christiansen PM, Jensen VE, Boedtkjer E: Na,HCO -cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted ph gradient across the plasma membrane. Pflugers Arch. 2014
16.
go back to reference Sun X, Zhao D, Li YL, Sun Y, Lei XH, Zhang JN, et al. Regulation of ASIC1 by Ca2+/calmodulin-dependent protein kinase II in human glioblastoma multiforme. Oncol Rep. 2013;30:2852–8.PubMed Sun X, Zhao D, Li YL, Sun Y, Lei XH, Zhang JN, et al. Regulation of ASIC1 by Ca2+/calmodulin-dependent protein kinase II in human glioblastoma multiforme. Oncol Rep. 2013;30:2852–8.PubMed
17.
go back to reference Berdiev BK, Xia J, McLean LA, Markert JM, Gillespie GY, Mapstone TB, et al. Acid-sensing ion channels in malignant gliomas. J Biol Chem. 2003;278:15023–34.CrossRefPubMed Berdiev BK, Xia J, McLean LA, Markert JM, Gillespie GY, Mapstone TB, et al. Acid-sensing ion channels in malignant gliomas. J Biol Chem. 2003;278:15023–34.CrossRefPubMed
18.
go back to reference Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, et al. Cox-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer. 2000;89:2637–45.CrossRefPubMed Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, et al. Cox-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer. 2000;89:2637–45.CrossRefPubMed
19.
go back to reference Cuddapah VA, Sontheimer H. Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol. 2011;301:C541–9.CrossRefPubMedPubMedCentral Cuddapah VA, Sontheimer H. Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol. 2011;301:C541–9.CrossRefPubMedPubMedCentral
20.
go back to reference Wang Y, Wu X, Li Q, Zhang S, Li SJ. Human voltage-gated proton channel Hv1: a new potential biomarker for diagnosis and prognosis of colorectal cancer. PLoS One. 2013;8:e70550.CrossRefPubMedPubMedCentral Wang Y, Wu X, Li Q, Zhang S, Li SJ. Human voltage-gated proton channel Hv1: a new potential biomarker for diagnosis and prognosis of colorectal cancer. PLoS One. 2013;8:e70550.CrossRefPubMedPubMedCentral
21.
go back to reference Yuan FL, Chen FH, Lu WG, Li X, Wu FR, Li JP, et al. Acid-sensing ion channel 1a mediates acid-induced increases in intracellular calcium in rat articular chondrocytes. Mol Cell Biochem. 2010;340:153–9.CrossRefPubMed Yuan FL, Chen FH, Lu WG, Li X, Wu FR, Li JP, et al. Acid-sensing ion channel 1a mediates acid-induced increases in intracellular calcium in rat articular chondrocytes. Mol Cell Biochem. 2010;340:153–9.CrossRefPubMed
23.
go back to reference Guo YC, Chang CM, Hsu WL, Chiu SJ, Tsai YT, Chou YH, et al. Indomethacin inhibits cancer cell migration via attenuation of cellular calcium mobilization. Molecules. 2013;18:6584–96.CrossRefPubMed Guo YC, Chang CM, Hsu WL, Chiu SJ, Tsai YT, Chou YH, et al. Indomethacin inhibits cancer cell migration via attenuation of cellular calcium mobilization. Molecules. 2013;18:6584–96.CrossRefPubMed
24.
go back to reference Le GJ, Ouadid-Ahidouch H, Soriani O, Besson P, Ahidouch A, Vandier C. Voltage-gated ion channels, new targets in anti-cancer research. Recent Patents Anticancer Drug Discov. 2007;2:189–202.CrossRef Le GJ, Ouadid-Ahidouch H, Soriani O, Besson P, Ahidouch A, Vandier C. Voltage-gated ion channels, new targets in anti-cancer research. Recent Patents Anticancer Drug Discov. 2007;2:189–202.CrossRef
25.
go back to reference Brackenbury WJ. Voltage-gated sodium channels and metastatic disease. Channels (Austin). 2012;6:352–61.CrossRef Brackenbury WJ. Voltage-gated sodium channels and metastatic disease. Channels (Austin). 2012;6:352–61.CrossRef
26.
go back to reference Prevarskaya N, Skryma R, Bidaux G, Flourakis M, Shuba Y. Ion channels in death and differentiation of prostate cancer cells. Cell Death Differ. 2007;14:1295–304.CrossRefPubMed Prevarskaya N, Skryma R, Bidaux G, Flourakis M, Shuba Y. Ion channels in death and differentiation of prostate cancer cells. Cell Death Differ. 2007;14:1295–304.CrossRefPubMed
27.
go back to reference Brackenbury WJ, Djamgoz MB, Isom LL. An emerging role for voltage-gated Na + channels in cellular migration: regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist. 2008;14:571–83.CrossRefPubMedPubMedCentral Brackenbury WJ, Djamgoz MB, Isom LL. An emerging role for voltage-gated Na + channels in cellular migration: regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist. 2008;14:571–83.CrossRefPubMedPubMedCentral
28.
go back to reference Andersen AP, Moreira JM, Pedersen SF. Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130098.CrossRefPubMedPubMedCentral Andersen AP, Moreira JM, Pedersen SF. Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130098.CrossRefPubMedPubMedCentral
29.
go back to reference Waldmann R, Champigny G, Lingueglia E, De Weille JR, Heurteaux C, Lazdunski M. H(+)-gated cation channels. Ann N Y Acad Sci. 1999;868:67–76.CrossRefPubMed Waldmann R, Champigny G, Lingueglia E, De Weille JR, Heurteaux C, Lazdunski M. H(+)-gated cation channels. Ann N Y Acad Sci. 1999;868:67–76.CrossRefPubMed
30.
go back to reference Thongon N, Ketkeaw P, Nuekchob C. The roles of acid-sensing ion channel 1a and ovarian cancer G protein-coupled receptor 1 on passive Mg2+ transport across intestinal epithelium-like Caco-2 monolayers. J Physiol Sci. 2014;64:129–39.CrossRefPubMed Thongon N, Ketkeaw P, Nuekchob C. The roles of acid-sensing ion channel 1a and ovarian cancer G protein-coupled receptor 1 on passive Mg2+ transport across intestinal epithelium-like Caco-2 monolayers. J Physiol Sci. 2014;64:129–39.CrossRefPubMed
31.
go back to reference Rothberg JM, Bailey KM, Wojtkowiak JW, Ben-Nun Y, Bogyo M, Weber E, et al. Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia. 2013;15:1125–37.CrossRefPubMedPubMedCentral Rothberg JM, Bailey KM, Wojtkowiak JW, Ben-Nun Y, Bogyo M, Weber E, et al. Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia. 2013;15:1125–37.CrossRefPubMedPubMedCentral
33.
go back to reference Karuri AR, Dobrowsky E, Tannock IF. Selective cellular acidification and toxicity of weak organic acids in an acidic microenvironment. Br J Cancer. 1993;68:1080–7.CrossRefPubMedPubMedCentral Karuri AR, Dobrowsky E, Tannock IF. Selective cellular acidification and toxicity of weak organic acids in an acidic microenvironment. Br J Cancer. 1993;68:1080–7.CrossRefPubMedPubMedCentral
34.
go back to reference Kapoor N, Bartoszewski R, Qadri YJ, Bebok Z, Bubien JK, Fuller CM, et al. Knockdown of ASIC1 and epithelial sodium channel subunits inhibits glioblastoma whole cell current and cell migration. J Biol Chem. 2009;284:24526–41.CrossRefPubMedPubMedCentral Kapoor N, Bartoszewski R, Qadri YJ, Bebok Z, Bubien JK, Fuller CM, et al. Knockdown of ASIC1 and epithelial sodium channel subunits inhibits glioblastoma whole cell current and cell migration. J Biol Chem. 2009;284:24526–41.CrossRefPubMedPubMedCentral
35.
go back to reference Kapoor N, Lee W, Clark E, Bartoszewski R, McNicholas CM, Latham CB, et al. Interaction of ASIC1 and ENaC subunits in human glioma cells and rat astrocytes. Am J Physiol Cell Physiol. 2011;300:C1246–59.CrossRefPubMedPubMedCentral Kapoor N, Lee W, Clark E, Bartoszewski R, McNicholas CM, Latham CB, et al. Interaction of ASIC1 and ENaC subunits in human glioma cells and rat astrocytes. Am J Physiol Cell Physiol. 2011;300:C1246–59.CrossRefPubMedPubMedCentral
36.
go back to reference Rooj AK, McNicholas CM, Bartoszewski R, Bebok Z, Benos DJ, Fuller CM. Glioma-specific cation conductance regulates migration and cell cycle progression. J Biol Chem. 2012;287:4053–65.CrossRefPubMed Rooj AK, McNicholas CM, Bartoszewski R, Bebok Z, Benos DJ, Fuller CM. Glioma-specific cation conductance regulates migration and cell cycle progression. J Biol Chem. 2012;287:4053–65.CrossRefPubMed
37.
go back to reference Grifoni SC, Jernigan NL, Hamilton G, Drummond HA. ASIC proteins regulate smooth muscle cell migration. Microvasc Res. 2008;75:202–10.CrossRefPubMed Grifoni SC, Jernigan NL, Hamilton G, Drummond HA. ASIC proteins regulate smooth muscle cell migration. Microvasc Res. 2008;75:202–10.CrossRefPubMed
38.
go back to reference Arun T, Tomassini V, Sbardella E, de Ruiter MB, Matthews L, Leite MI, et al. Targeting ASIC1 in primary progressive multiple sclerosis: evidence of neuroprotection with amiloride. Brain. 2013;136:106–15.CrossRefPubMed Arun T, Tomassini V, Sbardella E, de Ruiter MB, Matthews L, Leite MI, et al. Targeting ASIC1 in primary progressive multiple sclerosis: evidence of neuroprotection with amiloride. Brain. 2013;136:106–15.CrossRefPubMed
39.
go back to reference Diochot S, Baron A, Salinas M, Douguet D, Scarzello S, Dabert-Gay AS, et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature. 2012;490:552–5.CrossRefPubMed Diochot S, Baron A, Salinas M, Douguet D, Scarzello S, Dabert-Gay AS, et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature. 2012;490:552–5.CrossRefPubMed
41.
go back to reference Yuan FL, Chen FH, Lu WG, Li X. Acid-sensing ion channels 3: a potential therapeutic target for pain treatment in arthritis. Mol Biol Rep. 2010;37:3233–8.CrossRefPubMed Yuan FL, Chen FH, Lu WG, Li X. Acid-sensing ion channels 3: a potential therapeutic target for pain treatment in arthritis. Mol Biol Rep. 2010;37:3233–8.CrossRefPubMed
Metadata
Title
Involvement of acid-sensing ion channel 1α in hepatic carcinoma cell migration and invasion
Authors
Cheng Jin
Qing-Hai Ye
Feng-Lai Yuan
Yuan-Long Gu
Jian-Ping Li
Ying-Hong Shi
Xiao-Min Shen
Bo-Liu
Zhen-Hai Lin
Publication date
01-06-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 6/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3070-6

Other articles of this Issue 6/2015

Tumor Biology 6/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine