Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 7/2014

01-07-2014 | Neurophthalmology

Investigation of summation mechanisms in the pupillomotor system

Authors: Karolína Skorkovská, Helmut Wilhelm, Holger Lüdtke, Barbara Wilhelm, Anne Kurtenbach

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 7/2014

Login to get access

Abstract

Background

To ascertain whether the pupillary response amplitude shows spatial summation of responses with increasing size of retinal stimulation, and to examine the pupillary responses for evidence of surround inhibition, analogous to that found in the receptive fields of the retinal ganglion cells.

Methods

By means of infrared-video-pupillography, the pupil reaction to stimuli of increasing size (1–15°) was measured in 30 normal subjects. Four different retinal locations (0°, 20° and 40° eccentricity on the upper temporal retina and 20° eccentricity on the lower nasal retina) were examined at four different stimulus luminances (17, 47, 87 and 140 cd/m2).

Results

When the average log amplitude of the pupil light reaction from the 30 subjects is plotted as a function of the log area of the stimulus, a bi-linear response is observed, which is most pronounced for the two higher luminances. The intersection points of the two linear responses are 2.01° in the fovea, 2.80° at 20° upper temporal retina, 2.85° at 20° lower nasal retina and 4.86° at 40° upper temporal retina.

Conclusions

This study suggests that pupillomotor summation areas consist of both summation and inhibitory zones. They show larger diameters than receptive fields of retinal ganglion cells and do not appear to reflect pupillary summation areas of the pretectal olivary nucleus luminance neurons.
Literature
1.
go back to reference Hartline HK (1940) The receptive field of the optic nerve fibers. Amer J Physiol 130:690–699 Hartline HK (1940) The receptive field of the optic nerve fibers. Amer J Physiol 130:690–699
2.
go back to reference Kuffler SK (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68PubMed Kuffler SK (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68PubMed
4.
go back to reference Jung RL, Spillmann L (1970) Receptive-field estimation and perceptual integration in human vision. In: Young FA, Lindsley DB (eds) Early Experience and Visual Information Processing in Perceptual and Reading Disorders. National Academy of Sciences, Washington DC, pp 181–197 Jung RL, Spillmann L (1970) Receptive-field estimation and perceptual integration in human vision. In: Young FA, Lindsley DB (eds) Early Experience and Visual Information Processing in Perceptual and Reading Disorders. National Academy of Sciences, Washington DC, pp 181–197
5.
go back to reference Ricco A (1877) Relazioni fra il minimo angolo visuale e l‘intensitá luminosa. Ann Ottol 6:373–479 Ricco A (1877) Relazioni fra il minimo angolo visuale e l‘intensitá luminosa. Ann Ottol 6:373–479
6.
go back to reference Piper H (1903) Über die Abhängigkeit des Reizwertes leuchtender Objekte von ihren Flächen bzw. Winkelgröße. Z Psychol Physiol Sinnesorg 32:98–112 Piper H (1903) Über die Abhängigkeit des Reizwertes leuchtender Objekte von ihren Flächen bzw. Winkelgröße. Z Psychol Physiol Sinnesorg 32:98–112
7.
go back to reference Cibis GW, Campos EC, Aulhorn E (1975) Pupillary hemiakinesia in suprageniculate lesions. Arch Ophthalmol 93:1322–1327PubMedCrossRef Cibis GW, Campos EC, Aulhorn E (1975) Pupillary hemiakinesia in suprageniculate lesions. Arch Ophthalmol 93:1322–1327PubMedCrossRef
8.
9.
go back to reference Schmid R, Lüdtke H, Wilhelm B, Wilhelm H (2005) Pupil campimetry in patients with visual field loss. Eur J Neurol 12:602–608PubMedCrossRef Schmid R, Lüdtke H, Wilhelm B, Wilhelm H (2005) Pupil campimetry in patients with visual field loss. Eur J Neurol 12:602–608PubMedCrossRef
10.
go back to reference Skorkovská K, Wilhelm H, Lüdtke H, Wilhelm B (2009) How sensitive is pupil campimetry in hemifield loss? Graefes Arch Clin Exp Ophthalmol 247:947–953PubMedCrossRef Skorkovská K, Wilhelm H, Lüdtke H, Wilhelm B (2009) How sensitive is pupil campimetry in hemifield loss? Graefes Arch Clin Exp Ophthalmol 247:947–953PubMedCrossRef
11.
go back to reference Gamlin PD, Zhang H, Clarke RJ (1995) Luminance neurons in the pretectal olivary nucleus mediate the pupillary light reflex in the rhesus monkey. Exp Brain Res 106:169–176PubMedCrossRef Gamlin PD, Zhang H, Clarke RJ (1995) Luminance neurons in the pretectal olivary nucleus mediate the pupillary light reflex in the rhesus monkey. Exp Brain Res 106:169–176PubMedCrossRef
12.
go back to reference Pong M, Fuchs AF (2000) Characteristics of the pupillary light reflex in the macaque monkey: discharge patterns of pretectal neurons. J Neurophysiol 84:964–974PubMed Pong M, Fuchs AF (2000) Characteristics of the pupillary light reflex in the macaque monkey: discharge patterns of pretectal neurons. J Neurophysiol 84:964–974PubMed
13.
go back to reference Zhang H, Clarke RJ, Gamlin PD (1996) Behavior of luminance neurons in the pretectal olivary nucleus during the pupillary near response. Exp Brain Res 112:158–162PubMedCrossRef Zhang H, Clarke RJ, Gamlin PD (1996) Behavior of luminance neurons in the pretectal olivary nucleus during the pupillary near response. Exp Brain Res 112:158–162PubMedCrossRef
14.
go back to reference Zeeh C, Horn AK (2012) The subnuclei of the oculomotor nucleus in humans. Klin Monbl Augenheilkd 229:1083–1089PubMedCrossRef Zeeh C, Horn AK (2012) The subnuclei of the oculomotor nucleus in humans. Klin Monbl Augenheilkd 229:1083–1089PubMedCrossRef
16.
go back to reference Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4:621–626PubMedCrossRef Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4:621–626PubMedCrossRef
17.
go back to reference Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247PubMedCrossRef Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247PubMedCrossRef
18.
go back to reference Alexandridis E (1970) Räumliche und zeitliche Summation pupillomotorisch wirksamer Lichtreize beim Menschen. Albrecht v. Graefes Arch Clin Exp Ophthalmol 180:12–19CrossRef Alexandridis E (1970) Räumliche und zeitliche Summation pupillomotorisch wirksamer Lichtreize beim Menschen. Albrecht v. Graefes Arch Clin Exp Ophthalmol 180:12–19CrossRef
19.
go back to reference Krastel H, Alexandridis E, Gertz J (1985) Pupil increment threshold are influenced by color opponent mechanisms. Ophthalmologica 191:35–38PubMedCrossRef Krastel H, Alexandridis E, Gertz J (1985) Pupil increment threshold are influenced by color opponent mechanisms. Ophthalmologica 191:35–38PubMedCrossRef
Metadata
Title
Investigation of summation mechanisms in the pupillomotor system
Authors
Karolína Skorkovská
Helmut Wilhelm
Holger Lüdtke
Barbara Wilhelm
Anne Kurtenbach
Publication date
01-07-2014
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 7/2014
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-014-2677-4

Other articles of this Issue 7/2014

Graefe's Archive for Clinical and Experimental Ophthalmology 7/2014 Go to the issue