Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2015

01-10-2015 | Laboratory Investigation

Investigating a signature of temozolomide resistance in GBM cell lines using metabolomics

Authors: Patrick-Denis St-Coeur, Julie J. Poitras, Miroslava Cuperlovic-Culf, Mohamed Touaibia, Pier Jr Morin

Published in: Journal of Neuro-Oncology | Issue 1/2015

Login to get access

Abstract

Glioblastoma multiforme (GBM) is the most common form of malignant glioma. Current therapeutic approach to treat this malignancy involves a combination of surgery, radiotherapy and chemotherapy with temozolomide. Numerous mechanisms contributing to inherent and acquired resistance to this chemotherapeutic agent have been identified and can lead to treatment failure. This study undertook a metabolomics-based approach to characterize the metabolic profiles observed in temozolomide-sensitive and temozolomide-resistant GBM cell lines as well as in a small sub-set of primary GBM tumors. This approach was also utilized to explore the metabolic changes modulated upon cell treatment with temozolomide and lomeguatrib, an MGMT inhibitor with temozolomide-sensitizing potential. Metabolites previously explored for their potential role in chemoresistance including glucose, citrate and isocitrate demonstrated elevated levels in temozolomide-resistant GBM cells. In addition, a signature of metabolites comprising alanine, choline, creatine and phosphorylcholine was identified as up-regulated in sensitive GBM cell line across different treatments. These results present the metabolic profiles associated with temozolomide response in selected GBM models and propose interesting leads that could be leveraged for the development of therapeutic or diagnostic tools to impact temozolomide response in GBMs.
Literature
1.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCentralCrossRefPubMed Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCentralCrossRefPubMed
2.
go back to reference Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10:319–331CrossRefPubMed Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10:319–331CrossRefPubMed
3.
go back to reference Fleming TP, Saxena A, Clark WC, Robertson JT, Oldfield EH, Aaronson SA, Ali IU (1992) Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 52:4550–4553PubMed Fleming TP, Saxena A, Clark WC, Robertson JT, Oldfield EH, Aaronson SA, Ali IU (1992) Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 52:4550–4553PubMed
4.
go back to reference Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947CrossRefPubMed Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947CrossRefPubMed
5.
go back to reference Frederick L, Wang XY, Eley G, James CD (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60:1383–1387PubMed Frederick L, Wang XY, Eley G, James CD (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60:1383–1387PubMed
6.
go back to reference Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110PubMedCentralCrossRefPubMed Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110PubMedCentralCrossRefPubMed
7.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed
8.
go back to reference Newlands ES, Blackledge GR, Slack JA, Rustin GJ, Smith DB, Stuart NS, Quarterman CP, Hoffman R, Stevens MF, Brampton MH (1992) Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br J Cancer 65:287–291PubMedCentralCrossRefPubMed Newlands ES, Blackledge GR, Slack JA, Rustin GJ, Smith DB, Stuart NS, Quarterman CP, Hoffman R, Stevens MF, Brampton MH (1992) Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br J Cancer 65:287–291PubMedCentralCrossRefPubMed
9.
go back to reference Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466CrossRefPubMed Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466CrossRefPubMed
10.
go back to reference Pegg AE, Dolan ME, Moschel RC (1995) Structure, function, and inhibition of O6-alkylguanine–DNA alkyltransferase. Prog Nucleic Acid Res Mol Biol 51:167–223CrossRefPubMed Pegg AE, Dolan ME, Moschel RC (1995) Structure, function, and inhibition of O6-alkylguanine–DNA alkyltransferase. Prog Nucleic Acid Res Mol Biol 51:167–223CrossRefPubMed
11.
go back to reference Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, Mehta MP, Gilbert MR (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26:4189–4199CrossRefPubMed Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, Mehta MP, Gilbert MR (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26:4189–4199CrossRefPubMed
12.
go back to reference Watson AJ, Sabharwal A, Thorncroft M, McGown G, Kerr R, Bojanic S, Soonawalla Z, King A, Miller A, Waller S, Leung H, Margison GP, Middleton MR (2010) Tumor O(6)-methylguanine-DNA methyltransferase inactivation by oral lomeguatrib. Clin Cancer Res 16:743–749PubMedCentralCrossRefPubMed Watson AJ, Sabharwal A, Thorncroft M, McGown G, Kerr R, Bojanic S, Soonawalla Z, King A, Miller A, Waller S, Leung H, Margison GP, Middleton MR (2010) Tumor O(6)-methylguanine-DNA methyltransferase inactivation by oral lomeguatrib. Clin Cancer Res 16:743–749PubMedCentralCrossRefPubMed
13.
go back to reference Taspinar M, Ilgaz S, Ozdemir M, Ozkan T, Oztuna D, Canpinar H, Rey JA, Sunguroğlu A, Castresana JS, Ugur HC (2013) Effect of lomeguatrib-temozolomide combination on MGMT promoter methylation and expression in primary glioblastoma tumor cells. Tumour Biol 34:1935–1947CrossRefPubMed Taspinar M, Ilgaz S, Ozdemir M, Ozkan T, Oztuna D, Canpinar H, Rey JA, Sunguroğlu A, Castresana JS, Ugur HC (2013) Effect of lomeguatrib-temozolomide combination on MGMT promoter methylation and expression in primary glioblastoma tumor cells. Tumour Biol 34:1935–1947CrossRefPubMed
14.
go back to reference Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161CrossRefPubMed Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161CrossRefPubMed
15.
go back to reference Wishart DS (2008) Applications of metabolomics in drug discovery and development. Drugs R D 9(5):307–322CrossRefPubMed Wishart DS (2008) Applications of metabolomics in drug discovery and development. Drugs R D 9(5):307–322CrossRefPubMed
16.
go back to reference Johnson CH, Gonzalez FJ (2012) Challenges and opportunities of metabolomics. J Cell Physiol 227:2975–2981CrossRefPubMed Johnson CH, Gonzalez FJ (2012) Challenges and opportunities of metabolomics. J Cell Physiol 227:2975–2981CrossRefPubMed
17.
go back to reference Cuperlovic-Culf M, Culf AS, Morin P Jr, Touaibia M (2013) Application of metabolomics in drug discovery, development and theranostics. Curr Metabol 1:41–57 Cuperlovic-Culf M, Culf AS, Morin P Jr, Touaibia M (2013) Application of metabolomics in drug discovery, development and theranostics. Curr Metabol 1:41–57
18.
go back to reference Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479CrossRefPubMed Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479CrossRefPubMed
19.
go back to reference Lee ES, Ko KK, Joe YA, Kang SG, Hong YK (2011) Inhibition of STAT3 reverses drug resistance acquired in temozolomide-resistant human glioma cells. Oncol Lett 2:115–121PubMedCentralPubMed Lee ES, Ko KK, Joe YA, Kang SG, Hong YK (2011) Inhibition of STAT3 reverses drug resistance acquired in temozolomide-resistant human glioma cells. Oncol Lett 2:115–121PubMedCentralPubMed
20.
go back to reference Cuperlovic-Culf M, Touaibia M, St-Coeur P-D, Poitras J, Morin P Jr, Culf AS (2014) Metabolic effects of known and novel HDAC and SIRT inhibitors in glioblastomas independently or combined with temozolomide. Metabolites 4:807–830PubMedCentralCrossRefPubMed Cuperlovic-Culf M, Touaibia M, St-Coeur P-D, Poitras J, Morin P Jr, Culf AS (2014) Metabolic effects of known and novel HDAC and SIRT inhibitors in glioblastomas independently or combined with temozolomide. Metabolites 4:807–830PubMedCentralCrossRefPubMed
21.
go back to reference Cuperlovic-Culf M, Ferguson D, Culf A, Morin P Jr, Touaibia M (2012) 1H NMR metabolomics analysis of glioblastoma subtypes: correlation between metabolomics and gene expression characteristics. J Biol Chem 287:20164–20175PubMedCentralCrossRefPubMed Cuperlovic-Culf M, Ferguson D, Culf A, Morin P Jr, Touaibia M (2012) 1H NMR metabolomics analysis of glioblastoma subtypes: correlation between metabolomics and gene expression characteristics. J Biol Chem 287:20164–20175PubMedCentralCrossRefPubMed
22.
go back to reference Lefort N, Brown A, Lloyd V, Ouellette R, Touaibia M, Culf AS, Cuperlovic-Culf M (2013) 1H NMR metabolomics analysis of the effect of dichloroacetate and allopurinol on breast cancers. J Pharm Biomed Anal 93:77–85CrossRefPubMed Lefort N, Brown A, Lloyd V, Ouellette R, Touaibia M, Culf AS, Cuperlovic-Culf M (2013) 1H NMR metabolomics analysis of the effect of dichloroacetate and allopurinol on breast cancers. J Pharm Biomed Anal 93:77–85CrossRefPubMed
23.
go back to reference Morin P Jr, Ferguson D, LeBlanc LM, Hébert MJ, Paré AF, Jean-François J, Surette ME, Touaibia M, Cuperlovic-Culf M (2013) NMR metabolomics analysis of the effects of 5-lipoxygenase inhibitors on metabolism in glioblastomas. J Prot Res 12:2165–2176CrossRef Morin P Jr, Ferguson D, LeBlanc LM, Hébert MJ, Paré AF, Jean-François J, Surette ME, Touaibia M, Cuperlovic-Culf M (2013) NMR metabolomics analysis of the effects of 5-lipoxygenase inhibitors on metabolism in glioblastomas. J Prot Res 12:2165–2176CrossRef
24.
go back to reference Savorani F, Tomasi G, Engelsen SB (2010) Icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson 202:190–202CrossRefPubMed Savorani F, Tomasi G, Engelsen SB (2010) Icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson 202:190–202CrossRefPubMed
25.
go back to reference Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121PubMedCentralCrossRefPubMed Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121PubMedCentralCrossRefPubMed
26.
go back to reference Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610PubMedCentralCrossRefPubMed Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610PubMedCentralCrossRefPubMed
27.
go back to reference Bobola MS, Berger MS, Silber JR (1995) Contribution of O6-methylguanine-DNA methyltransferase to resistance to 1,3-(2-chloroethyl)-1-nitrosurea in human brain tumor-derived cell lines. Mol Carcinog 13:81–88CrossRefPubMed Bobola MS, Berger MS, Silber JR (1995) Contribution of O6-methylguanine-DNA methyltransferase to resistance to 1,3-(2-chloroethyl)-1-nitrosurea in human brain tumor-derived cell lines. Mol Carcinog 13:81–88CrossRefPubMed
28.
go back to reference Mrugula MM, Chamberlain MC (2008) Mechanisms of disease: temozolomide and glioblastoma—look to the future. Nat Clin Pract Oncol 5:476–486CrossRef Mrugula MM, Chamberlain MC (2008) Mechanisms of disease: temozolomide and glioblastoma—look to the future. Nat Clin Pract Oncol 5:476–486CrossRef
29.
go back to reference Carlson BL, Grogan PT, Mladek AC, Schroeder MA, Kitange GJ, Decker PA, Giannini C, Wu W, Ballman KA, James CD, Sarkaria JN (2009) Radiosensitizing effects of temozolomide observed in vivo only in a subset of O6-methylguanine-DNA methyltransferase methylated glioblastoma multiforme xenografts. Int J Radiat Oncol Biol Phys 75:212–219PubMedCentralCrossRefPubMed Carlson BL, Grogan PT, Mladek AC, Schroeder MA, Kitange GJ, Decker PA, Giannini C, Wu W, Ballman KA, James CD, Sarkaria JN (2009) Radiosensitizing effects of temozolomide observed in vivo only in a subset of O6-methylguanine-DNA methyltransferase methylated glioblastoma multiforme xenografts. Int J Radiat Oncol Biol Phys 75:212–219PubMedCentralCrossRefPubMed
30.
go back to reference de Saldanha da Gama Fischer J, Costa Carvalho P, da Fonseca CO, Liao L, Degrave WM, da Gloria da Costa Carvalho M, Yates JR, Domont GB (2011) Chemo-resistant protein expression pattern of glioblastoma cells (A172) to perillyl alcohol. J Proteome Res 10:153–160CrossRefPubMed de Saldanha da Gama Fischer J, Costa Carvalho P, da Fonseca CO, Liao L, Degrave WM, da Gloria da Costa Carvalho M, Yates JR, Domont GB (2011) Chemo-resistant protein expression pattern of glioblastoma cells (A172) to perillyl alcohol. J Proteome Res 10:153–160CrossRefPubMed
31.
go back to reference Clemons M, Kelly J, Watson AJ, Howell A, McElhinney RS, McMurry TBH, Margison GP (2005) O6-(4-bromothenyl)guanine reverses temozolomide resistance in human breast tumor MCF7 cells and xenografts. Br J Cancer 93:1152–1156PubMedCentralCrossRefPubMed Clemons M, Kelly J, Watson AJ, Howell A, McElhinney RS, McMurry TBH, Margison GP (2005) O6-(4-bromothenyl)guanine reverses temozolomide resistance in human breast tumor MCF7 cells and xenografts. Br J Cancer 93:1152–1156PubMedCentralCrossRefPubMed
32.
go back to reference Watson AJ, Middleton MR, McGown G, Thorncrofts M, Ranson M, Hersey P, McArthur G, Davis ID, Thomson D, Beith J, Haydon A, Kefford R, Lorigan P, Mortimer P, Sabharwal A, Hayward O, Margison GP (2009) O(6)-methylguanine-DNA methyltransferase depletion and DNA damage in patients with melanoma treated with temozolomide alone or with lomeguatrib. Br J Cancer 10:1250–1256CrossRef Watson AJ, Middleton MR, McGown G, Thorncrofts M, Ranson M, Hersey P, McArthur G, Davis ID, Thomson D, Beith J, Haydon A, Kefford R, Lorigan P, Mortimer P, Sabharwal A, Hayward O, Margison GP (2009) O(6)-methylguanine-DNA methyltransferase depletion and DNA damage in patients with melanoma treated with temozolomide alone or with lomeguatrib. Br J Cancer 10:1250–1256CrossRef
33.
go back to reference Hermisson M, Klumpp A, Wick W, Wischhusen J, Nagel G, Roos W, Kaina B, Weller M (2006) O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. J Neurochem 96:766–776CrossRefPubMed Hermisson M, Klumpp A, Wick W, Wischhusen J, Nagel G, Roos W, Kaina B, Weller M (2006) O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. J Neurochem 96:766–776CrossRefPubMed
34.
go back to reference Kitange GJ, Carlson BL, Schroeder MA, Grogan PT, Lamont JD, Decker PA, Wu W, James CD, Sarkaria JN (2009) Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro Oncol 11:281–291PubMedCentralCrossRefPubMed Kitange GJ, Carlson BL, Schroeder MA, Grogan PT, Lamont JD, Decker PA, Wu W, James CD, Sarkaria JN (2009) Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro Oncol 11:281–291PubMedCentralCrossRefPubMed
35.
go back to reference Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glumatamate. Cancer Res 59:4383–4391PubMed Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glumatamate. Cancer Res 59:4383–4391PubMed
36.
go back to reference Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7:1010–1015CrossRefPubMed Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7:1010–1015CrossRefPubMed
37.
go back to reference Kokkinakis DM, von Wronski MA, Vuong TH, Brent TP, Schold SC Jr (1997) Regulation of O6-methylguanine-DNA methyltransferase by methionine in human tumour cells. Br J Cancer 5:779–788CrossRef Kokkinakis DM, von Wronski MA, Vuong TH, Brent TP, Schold SC Jr (1997) Regulation of O6-methylguanine-DNA methyltransferase by methionine in human tumour cells. Br J Cancer 5:779–788CrossRef
38.
go back to reference Choi C, Ganji SK, DeBerardinis RJ, Dimitrov IE, Pascual JM, Bachoo R, Mickey BE, Malloy CR, Maher EA (2011) Measurement of glycine in the human brain in vivo by 1H-MRS at 3 T: application in brain tumors. Magn Reson Med 66:609–618PubMedCentralCrossRefPubMed Choi C, Ganji SK, DeBerardinis RJ, Dimitrov IE, Pascual JM, Bachoo R, Mickey BE, Malloy CR, Maher EA (2011) Measurement of glycine in the human brain in vivo by 1H-MRS at 3 T: application in brain tumors. Magn Reson Med 66:609–618PubMedCentralCrossRefPubMed
39.
go back to reference Locasale JW, Melman T, Song S, Yang X, Swanson KD, Cantley LC, Wong ET, Asara JM (2012) Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Mol Cell Proteomics 11(M111):014688PubMed Locasale JW, Melman T, Song S, Yang X, Swanson KD, Cantley LC, Wong ET, Asara JM (2012) Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Mol Cell Proteomics 11(M111):014688PubMed
40.
go back to reference Bauer DE, Harris MH, Plas DR, Lum JJ, Hammerman PS, Rathmell JC, Riley JL, Thompson CB (2004) Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J 18:1303–1305PubMedCentralPubMed Bauer DE, Harris MH, Plas DR, Lum JJ, Hammerman PS, Rathmell JC, Riley JL, Thompson CB (2004) Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J 18:1303–1305PubMedCentralPubMed
41.
go back to reference Tamada M, Nagano O, Tateyama S, Ohmura M, Yae T, Ishimoto T, Sugihara E, Onishi N, Yamamoto T, Yanagawa H, Suematsu M, Saya H (2012) Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res 72:1438–1448CrossRefPubMed Tamada M, Nagano O, Tateyama S, Ohmura M, Yae T, Ishimoto T, Sugihara E, Onishi N, Yamamoto T, Yanagawa H, Suematsu M, Saya H (2012) Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res 72:1438–1448CrossRefPubMed
42.
go back to reference Cao X, Fang L, Gibbs S, Huang Y, Dai Z, Wen P, Zheng X, Sadee W, Sun D (2007) Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol 59:495–505CrossRefPubMed Cao X, Fang L, Gibbs S, Huang Y, Dai Z, Wen P, Zheng X, Sadee W, Sun D (2007) Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol 59:495–505CrossRefPubMed
43.
go back to reference Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, Hines J, Chen X (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11:1672–1682CrossRefPubMed Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, Hines J, Chen X (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11:1672–1682CrossRefPubMed
44.
go back to reference Puig T, Aguilar H, Cufi S, Oliveras G, Turrado C, Ortega-Gutiérrez S, Benhamu B, Lopez-Rodriguez ML, Urruticoechea A, Colomer R (2011) A novel inhibitor of fatty acid synthase shows activity against HER2+ against HER2+ breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines. Breast Cancer Res 13:R131PubMedCentralCrossRefPubMed Puig T, Aguilar H, Cufi S, Oliveras G, Turrado C, Ortega-Gutiérrez S, Benhamu B, Lopez-Rodriguez ML, Urruticoechea A, Colomer R (2011) A novel inhibitor of fatty acid synthase shows activity against HER2+ against HER2+ breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines. Breast Cancer Res 13:R131PubMedCentralCrossRefPubMed
45.
go back to reference Somashekar BS, Kamarajan P, Danciu T, Kapila YL, Chinnaiyan AM, Rajendiran TM, Ramamoorthy A (2011) Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues. J Proteome Res 10:5232–5241PubMedCentralCrossRefPubMed Somashekar BS, Kamarajan P, Danciu T, Kapila YL, Chinnaiyan AM, Rajendiran TM, Ramamoorthy A (2011) Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues. J Proteome Res 10:5232–5241PubMedCentralCrossRefPubMed
46.
go back to reference He XH, Li WT, Gu YJ, Yang BF, Deng HW, Yu YH, Peng WJ (2013) Metabonomic studies of pancreatic cancer response to radiotherapy in a mouse xenograft model using magnetic resonance spectroscopy and principal components analysis. World J Gastroenterol 19:4200–4208PubMedCentralCrossRefPubMed He XH, Li WT, Gu YJ, Yang BF, Deng HW, Yu YH, Peng WJ (2013) Metabonomic studies of pancreatic cancer response to radiotherapy in a mouse xenograft model using magnetic resonance spectroscopy and principal components analysis. World J Gastroenterol 19:4200–4208PubMedCentralCrossRefPubMed
47.
go back to reference Wei S, Liu L, Zhang J, Bowers J, Gowda GA, Seeger H, Fehm T, Neubauer HJ, Vogel U, Clare SE, Raftery D (2013) Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer. Mol Oncol 7:297–307CrossRefPubMed Wei S, Liu L, Zhang J, Bowers J, Gowda GA, Seeger H, Fehm T, Neubauer HJ, Vogel U, Clare SE, Raftery D (2013) Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer. Mol Oncol 7:297–307CrossRefPubMed
48.
go back to reference Rocha CR, Garcia CC, Vieira DB, Quinet A, de Andrade-Lima LC, Munford V, Belizário JE, Menck CF (2014) Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo. Cell Death Dis 5:e1505CrossRefPubMed Rocha CR, Garcia CC, Vieira DB, Quinet A, de Andrade-Lima LC, Munford V, Belizário JE, Menck CF (2014) Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo. Cell Death Dis 5:e1505CrossRefPubMed
49.
go back to reference Tonigold M, Rossmann A, Meinold M, Bette M, Märken M, Henkenius K, Bretz AC, Giel G, Cai C, Rodepeter FR, Beneš V, Grénman R, Carey TE, Lage H, Stiewe T, Neubauer A, Werner JA, Brendel C, Mandic R (2014) A cisplatin-resistant head and neck cancer cell line with cytoplasmic p53(mut) exhibits ATP-binding cassette transporter upregulation and high glutathione levels. J Cancer Res Clin Oncol 140:1689–1704CrossRefPubMed Tonigold M, Rossmann A, Meinold M, Bette M, Märken M, Henkenius K, Bretz AC, Giel G, Cai C, Rodepeter FR, Beneš V, Grénman R, Carey TE, Lage H, Stiewe T, Neubauer A, Werner JA, Brendel C, Mandic R (2014) A cisplatin-resistant head and neck cancer cell line with cytoplasmic p53(mut) exhibits ATP-binding cassette transporter upregulation and high glutathione levels. J Cancer Res Clin Oncol 140:1689–1704CrossRefPubMed
50.
go back to reference Luchman HA, Stechishin OD, Nguyen SA, Lun XQ, Cairncross JG, Weiss S (2014) Dual mTORC1/2 blockade inhibits glioblastoma brain tumor initiating cells in vitro and in vivo and synergizes with temozolomide to increase orthotopic xenograft survival. Clin Cancer Res 20:5756–5767CrossRefPubMed Luchman HA, Stechishin OD, Nguyen SA, Lun XQ, Cairncross JG, Weiss S (2014) Dual mTORC1/2 blockade inhibits glioblastoma brain tumor initiating cells in vitro and in vivo and synergizes with temozolomide to increase orthotopic xenograft survival. Clin Cancer Res 20:5756–5767CrossRefPubMed
51.
go back to reference Kokkinakis DM, Hoffman RM, Frenkel EP, Wick JB, Han Q, Xu M, Tan Y, Schold SC (2001) Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res 61:4017–4123PubMed Kokkinakis DM, Hoffman RM, Frenkel EP, Wick JB, Han Q, Xu M, Tan Y, Schold SC (2001) Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res 61:4017–4123PubMed
52.
go back to reference Najim N, Podmore ID, McGown A, Estlin EJ (2009) Methionine restriction reduces the chemosensitivity of central nervous system tumour cell lines. Anticancer Res 29:3103–3108PubMed Najim N, Podmore ID, McGown A, Estlin EJ (2009) Methionine restriction reduces the chemosensitivity of central nervous system tumour cell lines. Anticancer Res 29:3103–3108PubMed
53.
go back to reference Al-Saffar NM, Marshall LV, Jackson LE, Balarajah G, Eykyn TR, Agliano A, Clarke PA, Jones C, Workman P, Pearson AD, Leach MO (2014) Lactate and choline metabolites detected in vitro by nuclear magnetic resonance spectroscopy are potential metabolic biomarkers for PI3 K inhibition in pediatric glioblastoma. PLoS One 9:e103835PubMedCentralCrossRefPubMed Al-Saffar NM, Marshall LV, Jackson LE, Balarajah G, Eykyn TR, Agliano A, Clarke PA, Jones C, Workman P, Pearson AD, Leach MO (2014) Lactate and choline metabolites detected in vitro by nuclear magnetic resonance spectroscopy are potential metabolic biomarkers for PI3 K inhibition in pediatric glioblastoma. PLoS One 9:e103835PubMedCentralCrossRefPubMed
54.
go back to reference Moestue SA, Dam CG, Gorad SS, Kristian A, Bofin A, Maelandsmo GM, Engebraten O, Gribbestad IS, Bjørkøy G (2013) Metabolic biomarkers for response to PI3 K inhibition in basal-like breast cancer. Breast Cancer Res 15:R16PubMedCentralCrossRefPubMed Moestue SA, Dam CG, Gorad SS, Kristian A, Bofin A, Maelandsmo GM, Engebraten O, Gribbestad IS, Bjørkøy G (2013) Metabolic biomarkers for response to PI3 K inhibition in basal-like breast cancer. Breast Cancer Res 15:R16PubMedCentralCrossRefPubMed
55.
go back to reference Ward CS, Eriksson P, Izquierdo-Garcia JL, Brandes AH, Ronen SM (2013) HDAC inhibition induces increased choline uptake and elevated phosphocholine levels in MCF7 breast cancer cells. PLoS One 8:e62610PubMedCentralCrossRefPubMed Ward CS, Eriksson P, Izquierdo-Garcia JL, Brandes AH, Ronen SM (2013) HDAC inhibition induces increased choline uptake and elevated phosphocholine levels in MCF7 breast cancer cells. PLoS One 8:e62610PubMedCentralCrossRefPubMed
56.
go back to reference Venkatesh HS, Chaumeil MM, Ward CS, Haas-Kogan DA, James CD, Ronen SM (2012) Reduced phosphocholine and hyperpolarized lactate provide magnetic resonance biomarkers of PI3 K/Akt/mTOR inhibition in glioblastoma. Neuro Oncol 14:315–325PubMedCentralCrossRefPubMed Venkatesh HS, Chaumeil MM, Ward CS, Haas-Kogan DA, James CD, Ronen SM (2012) Reduced phosphocholine and hyperpolarized lactate provide magnetic resonance biomarkers of PI3 K/Akt/mTOR inhibition in glioblastoma. Neuro Oncol 14:315–325PubMedCentralCrossRefPubMed
57.
go back to reference Middleton MR, Kelly J, Thatcher N, Donnelly DJ, McElhinney RS, McMurry TB, McCormick JE, Margison GP (2000) O(6)-(4-bromothenyl)guanine improves the therapeutic index of temozolomide against A375M melanoma xenografts. Int J Cancer 85:248–252CrossRefPubMed Middleton MR, Kelly J, Thatcher N, Donnelly DJ, McElhinney RS, McMurry TB, McCormick JE, Margison GP (2000) O(6)-(4-bromothenyl)guanine improves the therapeutic index of temozolomide against A375M melanoma xenografts. Int J Cancer 85:248–252CrossRefPubMed
Metadata
Title
Investigating a signature of temozolomide resistance in GBM cell lines using metabolomics
Authors
Patrick-Denis St-Coeur
Julie J. Poitras
Miroslava Cuperlovic-Culf
Mohamed Touaibia
Pier Jr Morin
Publication date
01-10-2015
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2015
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-015-1899-6

Other articles of this Issue 1/2015

Journal of Neuro-Oncology 1/2015 Go to the issue