Skip to main content
Top
Published in: Neurocritical Care 2/2021

01-04-2021 | Intracranial Hypertension | Original Work

Multimodal Assessment of Cerebral Autoregulation and Autonomic Function After Pediatric Cerebral Arteriovenous Malformation Rupture

Authors: Brian Appavu, Stephen Foldes, Brian T. Burrows, Austin Jacobson, Todd Abruzzo, Varina Boerwinkle, Anthony Willyerd, Tara Mangum, Vishal Gunnala, Iris Marku, P. D. Adelson

Published in: Neurocritical Care | Issue 2/2021

Login to get access

Abstract

Background

Management after cerebral arteriovenous malformation (AVM) rupture aims toward preventing hemorrhagic expansion while maintaining cerebral perfusion to avoid secondary injury. We investigated associations of model-based indices of cerebral autoregulation (CA) and autonomic function (AF) with outcomes after pediatric cerebral AVM rupture.

Methods

Multimodal neurologic monitoring data from the initial 3 days after cerebral AVM rupture were retrospectively analyzed in children (< 18 years). AF indices included standard deviation of heart rate (HRsd), root-mean-square of successive differences in heart rate (HRrmssd), low–high frequency ratio (LHF), and baroreflex sensitivity (BRS). CA indices include pressure reactivity index (PRx), wavelet pressure reactivity indices (wPRx and wPRx-thr), pulse amplitude index (PAx), and correlation coefficient between intracranial pressure pulse amplitude and cerebral perfusion pressure (RAC). Percent time of cerebral perfusion pressure (CPP) below lower limits of autoregulation (LLA) was also computed for each CA index. Primary outcomes were determined using Pediatric Glasgow Outcome Score Extended-Pediatrics (GOSE-PEDs) at 12 months and acquired epilepsy. Association of biomarkers with outcomes was investigated using linear regression, Wilcoxon signed-rank, or Chi-square.

Results

Fourteen children were analyzed. Lower AF indices were associated with poor outcomes (BRS [p = 0.04], HRsd [p = 0.04], and HRrmssd [p = 0.00]; and acquired epilepsy (LHF [p = 0.027]). Higher CA indices were associated with poor outcomes (PRx [p = 0.00], wPRx [p = 0.00], and wPRx-thr [p = 0.01]), and acquired epilepsy (PRx [p = 0.02] and wPRx [p = 0.00]). Increased time below LLA was associated with poor outcome (percent time below LLA based on PRx [p = 0.00], PAx [p = 0.04], wPRx-thr [p = 0.03], and RAC [p = 0.01]; and acquired epilepsy (PRx [p = 0.00], PAx [p = 0.00], wPRx-thr [p = 0.03], and RAC [p = 0.01]).

Conclusions

After pediatric cerebral AVM rupture, poor outcomes are associated with AF and CA when applying various neurophysiologic model-based indices. Prospective work is needed to assess these indices of CA and AF in clinical decision support.
Literature
1.
go back to reference Anderson RCE, McDowell MM MM, Kellner CP, Appelboom G, Bruce SS, Kotchekov IS, et al. Arteriovenous malformation-associated aneurysms in the pediatric population. J Neurosurg Pedaitr. 2012;9(1):11–6.CrossRef Anderson RCE, McDowell MM MM, Kellner CP, Appelboom G, Bruce SS, Kotchekov IS, et al. Arteriovenous malformation-associated aneurysms in the pediatric population. J Neurosurg Pedaitr. 2012;9(1):11–6.CrossRef
2.
go back to reference Hoh BL, Olgivy CS, Butler WE, Loeffler JS, Putman CM, Chapman PH. Multimodality treatment of nongalenic arteriovenous malformations in pediatric patients. Neurosurgery. 2000;47(2):346–58.PubMedCrossRef Hoh BL, Olgivy CS, Butler WE, Loeffler JS, Putman CM, Chapman PH. Multimodality treatment of nongalenic arteriovenous malformations in pediatric patients. Neurosurgery. 2000;47(2):346–58.PubMedCrossRef
3.
go back to reference Shtaya A, Millar J, Sparrow O. Multimodality management and outcomes of brain arterio-venous malformations (AVMs) in children: personal experience and review of the literature, with specific emphasis on age at first AVM bleed. Childs Nerv Syst. 2017;33(4):573–81.PubMedPubMedCentralCrossRef Shtaya A, Millar J, Sparrow O. Multimodality management and outcomes of brain arterio-venous malformations (AVMs) in children: personal experience and review of the literature, with specific emphasis on age at first AVM bleed. Childs Nerv Syst. 2017;33(4):573–81.PubMedPubMedCentralCrossRef
4.
go back to reference Olgivy CS, Stieg PE, Awad I, Brown RD Jr, Kondziolka D, Rosenwasser R, et al. AHA Scientific Statement: recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Stroke. 2001;32(6):1458–71.CrossRef Olgivy CS, Stieg PE, Awad I, Brown RD Jr, Kondziolka D, Rosenwasser R, et al. AHA Scientific Statement: recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Stroke. 2001;32(6):1458–71.CrossRef
5.
go back to reference Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.PubMed Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.PubMed
6.
go back to reference Chillon JM. Cerebral vessels during chronic hypertension: from arteries to therapeutics. J Hypertens. 2002;20(5):817–8.PubMedCrossRef Chillon JM. Cerebral vessels during chronic hypertension: from arteries to therapeutics. J Hypertens. 2002;20(5):817–8.PubMedCrossRef
7.
go back to reference Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Med. 2014;S(2):S282–96. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Med. 2014;S(2):S282–96.
8.
go back to reference Czosnyka M, Smielewski P, Piechnik S, Steiner LA, Pickard JD. Cerebral autoregulation following head injury. Neurosurgery. 2001;95:756–63.CrossRef Czosnyka M, Smielewski P, Piechnik S, Steiner LA, Pickard JD. Cerebral autoregulation following head injury. Neurosurgery. 2001;95:756–63.CrossRef
9.
go back to reference Aries MJ, Czosnykia M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63.PubMedCrossRef Aries MJ, Czosnykia M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63.PubMedCrossRef
10.
go back to reference Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.PubMedCrossRef Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.PubMedCrossRef
11.
go back to reference Petkus V, Preiksaitis A, Krakauskaite S, Zubaviciute E, Rocka S, Rastenyte D, et al. Benefit on optimal cerebral perfusion pressure-targeted treatment for traumatic brain injury patients. J Crit Care. 2017;41:49–55.PubMedCrossRef Petkus V, Preiksaitis A, Krakauskaite S, Zubaviciute E, Rocka S, Rastenyte D, et al. Benefit on optimal cerebral perfusion pressure-targeted treatment for traumatic brain injury patients. J Crit Care. 2017;41:49–55.PubMedCrossRef
12.
go back to reference Sykora M, Czosnyka M, Liu X, Donnelly J, Nasr N, Diedler J, et al. Autonomic impairment in severe traumatic brain injury: a multimodality neuromonitoring study. Crit Care Med. 2016;44(6):1173–81.PubMedCrossRef Sykora M, Czosnyka M, Liu X, Donnelly J, Nasr N, Diedler J, et al. Autonomic impairment in severe traumatic brain injury: a multimodality neuromonitoring study. Crit Care Med. 2016;44(6):1173–81.PubMedCrossRef
13.
go back to reference Beers SR, Wisniewski SR, Garcia-Filion P, Tian Y, Hahner T, Berger RP, et al. Validity of a pediatric version of the Glasgow Outcome Scale-Extended. J Neurotrauma. 2012;29(6):1126–39.PubMedPubMedCentralCrossRef Beers SR, Wisniewski SR, Garcia-Filion P, Tian Y, Hahner T, Berger RP, et al. Validity of a pediatric version of the Glasgow Outcome Scale-Extended. J Neurotrauma. 2012;29(6):1126–39.PubMedPubMedCentralCrossRef
14.
go back to reference Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65(4):476–83.PubMedCrossRef Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65(4):476–83.PubMedCrossRef
15.
go back to reference Zeiler FA, Donnelly J, Calviello L, Lee JK, Smielewski P, Brady K, et al. Validation of pressure reactivity and pulse amplitude indices against the lower limit of autoregulation, part I: experimental intracranial hypertension. J Neurotrauma. 2018;35(23):2803–11.PubMedPubMedCentralCrossRef Zeiler FA, Donnelly J, Calviello L, Lee JK, Smielewski P, Brady K, et al. Validation of pressure reactivity and pulse amplitude indices against the lower limit of autoregulation, part I: experimental intracranial hypertension. J Neurotrauma. 2018;35(23):2803–11.PubMedPubMedCentralCrossRef
16.
go back to reference Liu X, Donnelly J, Czosnyka M, Aries MJH, Brady K, Cardim D, et al. Cerebrovascular pressure reactivity monitoring using wavelet analysis in traumatic brain injury patients: a retrospective study. PLoS Med. 2017;14(7):e1002348.PubMedPubMedCentralCrossRef Liu X, Donnelly J, Czosnyka M, Aries MJH, Brady K, Cardim D, et al. Cerebrovascular pressure reactivity monitoring using wavelet analysis in traumatic brain injury patients: a retrospective study. PLoS Med. 2017;14(7):e1002348.PubMedPubMedCentralCrossRef
17.
go back to reference Zeiler FA, Donnelly J, Menon DK, Smielewski P, Hutchinson PGA, Czosnyka M. A description of a new continuous physiological index in traumatic brain injury using the correlation between pulse amplitude of intracranial pressure and cerebral perfusion pressure. J Neurotrauma. 2018;35:963–74.PubMedCrossRef Zeiler FA, Donnelly J, Menon DK, Smielewski P, Hutchinson PGA, Czosnyka M. A description of a new continuous physiological index in traumatic brain injury using the correlation between pulse amplitude of intracranial pressure and cerebral perfusion pressure. J Neurotrauma. 2018;35:963–74.PubMedCrossRef
18.
go back to reference Aries MJ, Wesselink R, Elting JW, Donnelly J, Czosnyka M, Ercole A, et al. Enhanced visualization of optimal cerebral perfusion pressure over time to support clinical decision making. Crit Care Med. 2016;44(10):e996–9.PubMedCrossRef Aries MJ, Wesselink R, Elting JW, Donnelly J, Czosnyka M, Ercole A, et al. Enhanced visualization of optimal cerebral perfusion pressure over time to support clinical decision making. Crit Care Med. 2016;44(10):e996–9.PubMedCrossRef
19.
go back to reference Donnelly J, Czosnyka M, Adams H, Robba C, Steiner LA, Cardim D, et al. Individualizing thresholds of cerebral perfusion pressure using estimated limits of autoregulation. Crit Care Med. 2017;45(9):1464–71.PubMedPubMedCentralCrossRef Donnelly J, Czosnyka M, Adams H, Robba C, Steiner LA, Cardim D, et al. Individualizing thresholds of cerebral perfusion pressure using estimated limits of autoregulation. Crit Care Med. 2017;45(9):1464–71.PubMedPubMedCentralCrossRef
20.
go back to reference No authors listed. Heart rate variability. Heart rate variability. Standards of measurement, physiologic interpretation, and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354–81. No authors listed. Heart rate variability. Heart rate variability. Standards of measurement, physiologic interpretation, and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354–81.
21.
go back to reference Westerhof BE, Gisolf J, Stok WJ, Wesseling KH, Karemaker JM. Time-domain cross-correlation baroreflex-sensitivity: performance on the EUROBAVAR data set. J Hypertens. 2004;22(7):1371–80.PubMedCrossRef Westerhof BE, Gisolf J, Stok WJ, Wesseling KH, Karemaker JM. Time-domain cross-correlation baroreflex-sensitivity: performance on the EUROBAVAR data set. J Hypertens. 2004;22(7):1371–80.PubMedCrossRef
22.
go back to reference Sykora M, Siarnik P, Szabo J, Turcani P, Krebs S, Lang W, et al. Baroreflex sensitivity is associated with post-stroke infections. An open, prospective study. J Neurol Sci. 2019;15(406):116450.CrossRef Sykora M, Siarnik P, Szabo J, Turcani P, Krebs S, Lang W, et al. Baroreflex sensitivity is associated with post-stroke infections. An open, prospective study. J Neurol Sci. 2019;15(406):116450.CrossRef
23.
go back to reference Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16:258–66.PubMedCrossRef Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16:258–66.PubMedCrossRef
24.
go back to reference Zeiler FA, Ercole A, Cabeleira M, Zoerle T, Stocchetti N, Menon DK, et al. Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a Center-TBI study. Acta Neurochir. 2019;161:1217–27.PubMedCrossRef Zeiler FA, Ercole A, Cabeleira M, Zoerle T, Stocchetti N, Menon DK, et al. Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a Center-TBI study. Acta Neurochir. 2019;161:1217–27.PubMedCrossRef
25.
go back to reference Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon DK, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1996;41:11–7.CrossRef Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon DK, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1996;41:11–7.CrossRef
26.
go back to reference Zeiler FA, Donnelly J, Calviello L, Smielewski P, Menon DK, Czosnyka M. Pressure autoregulation measurement techniques in adult traumatic brain injury, part II: a scoping review of continuous methods. J Neurotrauma. 2017;34:3227–37. Zeiler FA, Donnelly J, Calviello L, Smielewski P, Menon DK, Czosnyka M. Pressure autoregulation measurement techniques in adult traumatic brain injury, part II: a scoping review of continuous methods. J Neurotrauma. 2017;34:3227–37.
27.
go back to reference Zeiler FA, Ercole A, Cabeleira M, Carbonara M, Stocchetti N, Menon DK, et al. Comparison of performance of different optimal cerebral perfusion pressure parameters for outcome prediction in adult TBI: a Center-TBI study. J Neurotrauma. 2018;36:1505–17.PubMedCrossRef Zeiler FA, Ercole A, Cabeleira M, Carbonara M, Stocchetti N, Menon DK, et al. Comparison of performance of different optimal cerebral perfusion pressure parameters for outcome prediction in adult TBI: a Center-TBI study. J Neurotrauma. 2018;36:1505–17.PubMedCrossRef
28.
go back to reference Svedung Wettervik T, Howells T, Enblad P, Lewen A. Temporal neurophysiological dynamics in traumatic brain injury: role of pressure reactivity and optimal cerebral perfusion pressure for predicting outcome. J Neurotrauma. 2019;36:1818–27.PubMedCrossRef Svedung Wettervik T, Howells T, Enblad P, Lewen A. Temporal neurophysiological dynamics in traumatic brain injury: role of pressure reactivity and optimal cerebral perfusion pressure for predicting outcome. J Neurotrauma. 2019;36:1818–27.PubMedCrossRef
29.
go back to reference Freeman WD. Management of intracranial pressure. Contin Minneap Minn. 2015;21(5 Neurocritical Care):1299–323. Freeman WD. Management of intracranial pressure. Contin Minneap Minn. 2015;21(5 Neurocritical Care):1299–323.
30.
go back to reference Dias C, Maia I, Cerejo A, Smielewski P, Paiva JA, Czosnyka M. Plateau waves of intracranial pressure and multimodality brain monitoring. Acta Neurochir Suppl. 2016;122:143–6.PubMedCrossRef Dias C, Maia I, Cerejo A, Smielewski P, Paiva JA, Czosnyka M. Plateau waves of intracranial pressure and multimodality brain monitoring. Acta Neurochir Suppl. 2016;122:143–6.PubMedCrossRef
31.
go back to reference Donnelly J, Czosnyka M, Adams H, Robba C, Steiner LA, Cardim D, et al. Pressure reactivity-based optimal cerebral perfusion pressure in a traumatic brain injury cohort. Acta Neurochir Suppl. 2018;126:209–12.PubMedCrossRef Donnelly J, Czosnyka M, Adams H, Robba C, Steiner LA, Cardim D, et al. Pressure reactivity-based optimal cerebral perfusion pressure in a traumatic brain injury cohort. Acta Neurochir Suppl. 2018;126:209–12.PubMedCrossRef
32.
go back to reference Kramer AH, Couillard PL, Zygun DA, Aries MJ, Gallagher CN. Continuous assessment of ‘optimal’ cerebral perfusion pressure in traumatic brain injury: a cohort study of feasibility, reliability, and relation to outcome. Neurocrit Care. 2019;30:51–61.PubMedCrossRef Kramer AH, Couillard PL, Zygun DA, Aries MJ, Gallagher CN. Continuous assessment of ‘optimal’ cerebral perfusion pressure in traumatic brain injury: a cohort study of feasibility, reliability, and relation to outcome. Neurocrit Care. 2019;30:51–61.PubMedCrossRef
33.
go back to reference Brown CH, Neufield KJ, Tian J, Probert J, LaFlam A, Max L, et al. Effect of targeting mean arterial pressure during cardiopulmonary bypass by monitoring cerebral autoregulation on postsurgical delirium among older patients: a nested randomized clinical trial. JAMA Surg. 2019;154(9):819–26.PubMedPubMedCentralCrossRef Brown CH, Neufield KJ, Tian J, Probert J, LaFlam A, Max L, et al. Effect of targeting mean arterial pressure during cardiopulmonary bypass by monitoring cerebral autoregulation on postsurgical delirium among older patients: a nested randomized clinical trial. JAMA Surg. 2019;154(9):819–26.PubMedPubMedCentralCrossRef
34.
go back to reference Zeiler FA, Ercole A, Czosnyka M, Smielewski P, Hawryluk G, Hutchinson PJA, et al. Continuous cerebrovascular reactivity monitoring in moderate/severe traumatic brain injury: a narrative review of advances in neurocritical care. Brit J Anesth. 2020;124(4):440–53.CrossRef Zeiler FA, Ercole A, Czosnyka M, Smielewski P, Hawryluk G, Hutchinson PJA, et al. Continuous cerebrovascular reactivity monitoring in moderate/severe traumatic brain injury: a narrative review of advances in neurocritical care. Brit J Anesth. 2020;124(4):440–53.CrossRef
35.
go back to reference Uryga A, Burzynska M, Tabakow P, Kasprowicz M, Budohoski KP, Kazimierska A, et al. Baroreflex sensitivity and heart rate variability are predictors of mortality in patients with aneurysmal subarachnoid hemorrhage. J Neurol Sci. 2018;394:112–9.PubMedCrossRef Uryga A, Burzynska M, Tabakow P, Kasprowicz M, Budohoski KP, Kazimierska A, et al. Baroreflex sensitivity and heart rate variability are predictors of mortality in patients with aneurysmal subarachnoid hemorrhage. J Neurol Sci. 2018;394:112–9.PubMedCrossRef
36.
go back to reference Nasr N, Gaio R, Czosnyka M, Budohoski K, Liu X, Donnelly J, et al. Baroreflex impairment after subarachnoid hemorrhage is associated with unfavorable outcome. Stroke. 2018;49:1632–8.PubMedCrossRef Nasr N, Gaio R, Czosnyka M, Budohoski K, Liu X, Donnelly J, et al. Baroreflex impairment after subarachnoid hemorrhage is associated with unfavorable outcome. Stroke. 2018;49:1632–8.PubMedCrossRef
37.
go back to reference Tasker RC. Intracranial pressure and cerebrovascular autoregulation in pediatric critical illness. Semin Pediatr Neurol. 2014;21(4):255–62.PubMedCrossRef Tasker RC. Intracranial pressure and cerebrovascular autoregulation in pediatric critical illness. Semin Pediatr Neurol. 2014;21(4):255–62.PubMedCrossRef
39.
go back to reference LoPresti MA, Goethe EA, Lam S. Surgical strategies for management of pediatric arteriovenous malformation rupture: the role of initial decompressive craniectomy. Child Nerv Syst. 2020;36:1445–52.CrossRef LoPresti MA, Goethe EA, Lam S. Surgical strategies for management of pediatric arteriovenous malformation rupture: the role of initial decompressive craniectomy. Child Nerv Syst. 2020;36:1445–52.CrossRef
40.
go back to reference Meyer PG, Orliaguet GA, Zerah M, Charron B, Jarreau MM, Brunelle F, et al. Emergency management of deeply comatose children with acute rupture of cerebral arteriovenous malformations. Can J Anaesth. 2000;47(8):758–66.PubMedCrossRef Meyer PG, Orliaguet GA, Zerah M, Charron B, Jarreau MM, Brunelle F, et al. Emergency management of deeply comatose children with acute rupture of cerebral arteriovenous malformations. Can J Anaesth. 2000;47(8):758–66.PubMedCrossRef
41.
go back to reference Dorfer C, Czech T, Bavinzski G, Kitz K, Mert A, Knosp E, et al. Multimodality treatment of cerebral AVMs in children: a single-Centre 20 years experience. Childs Nerv Syst. 2010;26(5):681–7.PubMedCrossRef Dorfer C, Czech T, Bavinzski G, Kitz K, Mert A, Knosp E, et al. Multimodality treatment of cerebral AVMs in children: a single-Centre 20 years experience. Childs Nerv Syst. 2010;26(5):681–7.PubMedCrossRef
42.
go back to reference Ma L, Chen XL, Chen Y, Wu CX, Ma J, Zhao YL. Subsequent haemorrhage in children with untreated brain arteriovenous malformation: higher risk with unbalanced inflow and outflow angioarchitecture. Eur Radiol. 2017;27(7):2868–76.PubMedCrossRef Ma L, Chen XL, Chen Y, Wu CX, Ma J, Zhao YL. Subsequent haemorrhage in children with untreated brain arteriovenous malformation: higher risk with unbalanced inflow and outflow angioarchitecture. Eur Radiol. 2017;27(7):2868–76.PubMedCrossRef
43.
go back to reference Beecher JS, Lyon K, Ban VS, Vance A, McDougal C, Whitworth LA, et al. Delayed treatment of ruptured brain AVMs: is it ok to wait? Neurosurgery. 2018;128(4):999–1005.CrossRef Beecher JS, Lyon K, Ban VS, Vance A, McDougal C, Whitworth LA, et al. Delayed treatment of ruptured brain AVMs: is it ok to wait? Neurosurgery. 2018;128(4):999–1005.CrossRef
44.
go back to reference Budohoski KP, Reinhard M, Aries MJ, Czosnyka Z, Smielewski P, Pickard JD, et al. Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal? Neurocrit Care. 2012;2:211–8.CrossRef Budohoski KP, Reinhard M, Aries MJ, Czosnyka Z, Smielewski P, Pickard JD, et al. Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal? Neurocrit Care. 2012;2:211–8.CrossRef
45.
go back to reference Healy RJ, Vorrilla-Vaca A, Ziai W, Mirski MA, Hogue CW, Geocadin R, et al. Glasgow coma scale score fluctuations are associated with a NIRS-based index of cerebral autoregulation in acutely comatose patients. J Neurosurg Anesthesiol. 2019;31:306–10.PubMedPubMedCentralCrossRef Healy RJ, Vorrilla-Vaca A, Ziai W, Mirski MA, Hogue CW, Geocadin R, et al. Glasgow coma scale score fluctuations are associated with a NIRS-based index of cerebral autoregulation in acutely comatose patients. J Neurosurg Anesthesiol. 2019;31:306–10.PubMedPubMedCentralCrossRef
Metadata
Title
Multimodal Assessment of Cerebral Autoregulation and Autonomic Function After Pediatric Cerebral Arteriovenous Malformation Rupture
Authors
Brian Appavu
Stephen Foldes
Brian T. Burrows
Austin Jacobson
Todd Abruzzo
Varina Boerwinkle
Anthony Willyerd
Tara Mangum
Vishal Gunnala
Iris Marku
P. D. Adelson
Publication date
01-04-2021
Publisher
Springer US
Published in
Neurocritical Care / Issue 2/2021
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-020-01058-3

Other articles of this Issue 2/2021

Neurocritical Care 2/2021 Go to the issue